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the amplitude 2. N(q) depends on the 4-dimensional denominators Di = (q + pi)2 −m2
i as

follows

N(q) =
m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i"=i0,i1,i2,i3

Di

+
m−1
∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]
m−1
∏

i"=i0,i1,i2

Di

+
m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i"=i0,i1

Di

+
m−1
∑

i0

[a(i0) + ã(q; i0)]
m−1
∏

i"=i0

Di

+ P̃ (q)
m−1
∏

i

Di . (2.2)

Inserted back in Eq. (2.1), this expression simply states the multi-pole nature of any m-

point one-loop amplitude, that, clearly, contains a pole for any propagator in the loop,

thus one has terms ranging from 1 to m poles. Notice that the term with no poles,

namely that one proportional to P̃ (q) is polynomial and vanishes upon integration in

dimensional regularization; therefore does not contribute to the amplitude, as it should be.

The coefficients of the poles can be further split in two pieces. A piece that still depend

on q (the terms d̃, c̃, b̃, ã), that vanishes upon integration, and a piece that do not depend

on q (the terms d, c, b, a). Such a separation is always possible, as shown in Ref. [17], and,

with this choice, the latter set of coefficients is therefore immediately interpretable as the

ensemble of the coefficients of all possible 4, 3, 2, 1-point one-loop functions contributing

to the amplitude.

Once Eq. (2.2) is established, the task of computing the one-loop amplitude is then

reduced to the algebraical problem of determining the coefficients d, c, b, a by evaluating the

function N(q) a sufficient number of times, at different values of q, and then inverting the

system. That can be achieved quite efficiently by singling out particular choices of q such

that, systematically, 4, 3, 2 or 1 among all possible denominators Di vanishes. Then the

system of equations is solved iteratively. First one determines all possible 4-point functions,

then the 3-point functions and so on. For example, calling q±0 the 2 (in general complex)

solutions for which

D0 = D1 = D2 = D3 = 0 , (2.3)

(there are 2 solutions because of the quadratic nature of the propagators) and since the

functional form of d̃(q; 0123) is known, one directly finds the coefficient of the box diagram

containing the above 4 denominators through the two simple equations

N(q±0 ) = [d(0123) + d̃(q±0 ; 0123)]
∏

i"=0,1,2,3

Di(q
±
0 ) . (2.4)

2If needed, the ε-dimensional part of the numerator should be treated separately, as explained in [21].
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Figure 4 The triangle trick: Integration by parts eliminates the propagators
1, 2, 3 or 4.

be reduced. This reduces all tensor integrals to rank 1 integrals. Finally, the rank
1 integrals are reduced to scalar integrals.

6 Advanced methods

In sects. 2 to 4 we discussed general l-loop integrals and showed that all ten-
sor integrals can be reduced to scalar integrals and that the integration over the
l independent loop momenta can be performed at the expense of introducing ad-
ditional parameter integrals. The integrand for the Feynman parameter integral
can be read off directly from the underlying Feynman graph. In this section I will
present methods to compute these Feynman parameter integrals. As the tensor
reduction usually introduces a huge number scalar integrals, which differ by the
powers of the propagators or the by the dimension, I start in sect. 6.1 and 6.2 with
techniques, which reduce the unknown integrals to a smaller set, called “master
integrals”. In sects. 6.3 to 6.5 I will present techniques for the analytic calculation
of Feynman parameter integrals. Finally I review in sect. 6.6 a method for the
numerical computation of the coefficients of the Laurent expansion.

6.1 Integration by parts. Integration-by-part identities [56] are based on
the fact, that the integral of a total derivative is zero:

∫
dDk

iπD/2

∂

∂kµ
vµf(k, pi) = 0. (6.1)

Here, k is the loop momentum, the pi’s are external momenta with respect to this
loop integration and v can either be a loop momentum or an external momentum.
Working out the derivative yields a relation among several scalar integrals.

As an example we look at the triangle trick [57]: Assume that we have inside
a multi-loop integral the building block shown in fig. 4 with massless propagators
and p2 = 0:

T (ν1, ν2, ν3, ν4, ν5) =
1

(−k2
1)

ν1 (−(k1 − p)2)ν4

×
∫

dDk2

iπD/2

1

(−k2
2)

ν2 (−(k2 − p)2)ν3 (−(k2 − k1)2)
ν5

. (6.2)

Then by choosing k = k2 and v = k2 in eq. (6.1) we obtain
[

(D − 2ν2 − ν3 − ν5) − ν33
+2− − ν55

+
(

2− − 1−
)]

T (ν1, ν2, ν3, ν4, ν5) = 0.

(6.3)

The choice k = k2 − p and v = k2 − p yields a second relation:
[

(D − ν2 − 2ν3 − ν5) − ν22
+3− − ν55

+
(

3− − 4−
)]

T (ν1, ν2, ν3, ν4, ν5) = 0.

(6.4)

momenta ki we get
(

∑

i

pi ·
∂

∂pi
+
∑

i

mi
∂

∂mi
− Ld + 2

∑

i

ni

)

f

=

(

∑

i

qi ·
∂

∂qi
+
∑

i

mi
∂

∂mi
−
∑

i

ki ·
∂

∂ki
− Ld+ 2

∑

i

ni

)

f .

The integrand f is a homogeneous function of the momenta qi (both loop and external)
and the masses mi of degree −2

∑

ni, and this expression simplifies to

(

−
∑

i

ki ·
∂

∂ki
− Ld

)

f = −

(

∑

i

∂

∂ki
· ki

)

f . (4.2)

Thus the homogeneity relation is a linear combination of the IBP relations
∑

∂i · ki.
A scalar integral I does not change if we rotate the external momenta pi. In other

words, a Lorentz-transformation generator applied to I gives 0. If there are at least 2
external momenta (E ≥ 2), we can contract this tensor equation with pµi p

ν
j (i #= j) to

obtain a scalar relation

2pµi p
ν
j

(

∑

n

p[µn
∂

∂pν]n

)

I = 0 (4.3)

(square brackets mean antisymmetrization). On the other hand, the derivatives can be
calculated explicitly. This gives Lorentz-invariance relations [11].

Let’s apply this operator to the integrand f . Adding and subtracting the sum over the
loop momenta ki we get

2pµi p
ν
j

(

∑

n

p[µn
∂

∂pν]n

)

f = 2pµi p
ν
j

(

∑

n

q[µn
∂

∂qν]n
−
∑

n

k[µ
n

∂

∂kν]
n

)

f .

The integrand f is a scalar function of the momenta qi, and hence the first operator gives
0 when acting on f . Writing the antisymmetrization explicitly and commuting derivatives
to the left, we obtain

−2pµi p
ν
j

(

∑

n

k[µ
n

∂

∂kν]
n

)

f =
∑

n

(

pj · kn pi ·
∂

∂kn
− pi · kn pj ·

∂

∂kn

)

f

=
∑

n

∂

∂kn
· (pi pj · kn − pj pi · kn) f

(4.4)

(the extra terms from commutation cancel). Thus Lorentz-invariance relations are linear
combinations of IBP relations [8].
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Amplitudes Decomposition: 
                                            the algebraic way

Basis: {i j k}

Scalar product/Projection:
to extract the components

a = ax i  +  ay j  +  az k

ax = a.i 

ay = a.j 

az = a.k



Projections :: On-Shell Cut-Conditions

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2) ) (/p+m) !

X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`
1

d4`
2

�(4)
⇣
`
1

+ `
2

� P
12

⌘
�(+)

⇣
`2
1

�m2

1

⌘
�(+)

⇣
`2
2

�m2

2

⌘
(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
, (qi � zj⌘)

2 �m2

i = 2⌘.qi(zi � zj) (4.6)

1

q2
1

�m2

1

1

q2
2

�m2

2

· · · 1

q2n �m2

n
=

1

q2
1

�m2

1

1

(q
2

� z
1

⌘)2 �m2

2

· · · 1

(qn � z
1

⌘)2 �m2

n

+
1

(q
1

� z
2

⌘)2 �m2

1

1

q2
2

�m2

2

· · · 1

(qn � z
2

⌘)2 �m2

n

+ . . . . . .

+
1

(q
1

� zn⌘)2 �m2

1

1

(q
2

� zn⌘)2 �m2

2

· · · 1

q2n �m2

n

(4.7)

I
dz

z(z � z
1

)(z � z
2

) · · · (z � zn)
= 0 (4.8)

(�1)n

z
1

z
2

· · · zn
=

1

z
1

(z
1

� z
2

) · · · (z
1

� zn)

+
1

(z
2

� z
1

)z
2

· · · (z
2

� zn)
+ . . . . . .

+
1

(zn � z
1

(zn � z
2

) · · · (zn � zn�1

)zn
(4.9)
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) · · · (z
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+ . . . . . .
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Multi-Loop Integrand-Reduction
by 
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Problem: what is the form of the residues?

“find the right variables encoding the cut-structure”

• Loop momentum decomposition

q + p

i

=
4

X

↵=1

x

↵

e

(ijk··· )
↵

, x

↵

= (q + p

i

) · e(ijk··· )
↵

(2.7)

cut external (p
i

) auxiliary (v
i

) �-variables (ISP’s)

5 4 0 µ

2

4 3 1 µ

2
, q · v1

3 2 2 µ

2
, q · v

i

(i = 1, 2)

2 1 3 µ

2
, q · v

i

(i = 1, . . . , 3)

1 0 4 µ

2
, q · v

i

(i = 1, . . . , 4)

cut/legs basis �-variables (ISP’s)

external (p
i

) auxiliary (v
i

)

5 4 0 µ

2

4 3 1 µ

2
, q · v1

3 2 2 µ

2
, q · v

i

(i = 1, 2)

2 1 3 µ

2
, q · v

i

(i = 1, . . . , 3)

1 0 4 µ

2
, q · v

i

(i = 1, . . . , 4)

• ISP’s = Irreducible Scalar Products:

– q-components which can variate under cut-conditions

– spurious: vanishing upon integration

– non-spurious: non-vanishing upon integration ) MI’s

• @ 1-Loop

– (q · p
i

) are ALL reducible

– ISP’s could be chosen to be ALL spurious

– n-ple cut identifies an n-point diagram

• Determine the n-point residue (�) from the n-ple cut:

the subtraction of the m-point residues with n < m  5 is necessary to guarantee

a polynomial form ! numerical fitting

• the 5-point residue doesn’t show up

• the 4-point residue doesn’t show up

• �R = reduced polynomial (⇢ �)

– 5 –
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 Remainder Theorem

A simple idea

7.7 example

q

2
1q

2
2 � (q1 · q2)2 = (µ11µ22 � µ

2
12) +m

2(µ1 � µ2)
2 +

m

2

2
D3 + spurious (7.8)

I123[q21q22 � (q1 · q2)2] = I123[S(4; q1, q2)] = 3 Id+2
123 (7.9)

I123[µ11µ22 � µ

2
12] = I123[S(�2✏;µ1, µ2)] =

✏

2
(1 + 2✏) Id+2

123

I123[(µ1 � µ2)
2] = =

4� d

d

I12 (7.10)

�1

4
(d� 1)(d� 8) Id+2

123 =
2m2(d� 2)

d

Id
12 (7.11)

�1

4
(d� 1)(d� 8) Id+2

123 =
d(d� 2)

2m2
Id+2
12 (7.12)

8. temp

I

D
n [f(q, µ, pi)] ⌘

Z
d

D
q

f(q, µ, pi)

D1 · · ·Dn
(8.1)

µij $ @

@Aij
(8.2)

µ

2 (8.3)

9. Dirac

1 = i (�i) (9.1)

⇤ = (i�µ@µ) (�i�

⌫
@⌫) (9.2)

1n⇥n =
X

n

| nih n| (9.3)

10. Remainder Theorem

f(x)

g(x)
= q(x) +

r(x)

g(x)
, deg(r) < deg(g) (10.1)

g(x) = (x� x0) : ) f(x)

(x� x0)
= q(x) +

r0

(x� x0)
, r0 = f(x0) (10.2)
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Ideal

Groebner Basis

Zhang (2012); 
Mirabella, Ossola, Peraro, & P.M. (2012) 

2

integrand recurrence relation that generates the required
multi-particle pole decomposition for arbitrary ampli-
tudes, independently of the number of loops.
The algorithm treats the numerator and the denomi-

nators of any Feynman integrand, as multivariate poly-
nomials in the components of the loop variables. It uses
both the weak Nullstellensatz theorem [17] and the multi-
variate polynomial division modulo appropriate Gröbner
basis [17–20]. In the context of the integrand reduction,
univariate polynomial division has been already intro-
duced in [21] to improve the decomposition of one-loop
scattering amplitudes.

The algorithm, which is described in Section II, relies
on general properties of the loop integrand:

• When the number n of denominators is larger than
the total number of the components of the loop mo-
menta, the weak Nullstellensatz theorem [17] yields
the trivial reduction of an n-denominator integrand
in terms integrands with (n− 1) denominators.

• When n is equal or less than the total number of
components of the loop momenta, we divide the
numerator modulo the Gröbner basis of the n-ple
cut, namely modulo a set of polynomial vanishing
on the same on-shell solutions as the cut denomi-
nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing !-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type

Ii1···in ≡
Ni1···in(q1, . . . , q!)

Di1(q1, . . . , q!) · · ·Din(q1, . . . , q!)
, (1)

where q1, . . . , q! are integration momenta. The generic
propagator can be written as follows:

Di =





!
∑

j=1

αj qj + pi





2

−m2
i , αj ∈ {0,±1} . (2)

The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4!), i.e.

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)
. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,

Ji1···in = 〈Di1 , · · · , Din〉

≡

{

n
∑

κ=1

hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of

2
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nators. The remainder of the division is the residue
of the n-ple cut. The quotients generate integrands
with (n − 1) denominators which should undergo
the same decomposition.

• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
decomposition formula [5, 22–24].

In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.

During the completion of this work, Zhang has pre-
sented an algorithm [27] embedding the ideas presented
in [15] within more general techniques of algebraic geom-
etry, among which the division modulo Gröbner basis is
used as well.

II. MULTIVARIATE POLYNOMIAL DIVISION

In what follows, we assume 4-dimensional loop-
momenta. Extensions to higher-dimensional cases, ac-
cording to the chosen dimensional regularization scheme,
can be treated analogously - as we will show when dis-
cussing the one-loop integrand reduction.
The integrand reduction methods [5, 12, 15, 21–24, 28–

30] recast the problem of computing !-loop amplitudes
with n denominators as the reconstruction of integrand
functions of the type

Ii1···in ≡
Ni1···in(q1, . . . , q!)

Di1(q1, . . . , q!) · · ·Din(q1, . . . , q!)
, (1)

where q1, . . . , q! are integration momenta. The generic
propagator can be written as follows:

Di =
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∑

j=1

αj qj + pi




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−m2
i , αj ∈ {0,±1} . (2)

The numerator Ni1···in and any of the denominators Di

are polynomial in the components of the loop momenta,
say z ≡ (z1, . . . z4!), i.e.

Ii1···in =
Ni1···in(z)

Di1(z) · · ·Din(z)
. (3)

Let us consider the ideal generated by the n denomi-
nators in Eq. (3) ,

Ji1···in = 〈Di1 , · · · , Din〉

≡

{

n
∑

κ=1

hκ(z)Diκ(z) : hκ(z) ∈ P [z]

}

, (4)

where P [z] is the set of polynomials in z. The common
zeros of the elements of Ji1···in are exactly the common
zeros of the denominators.
The multi-pole decomposition of Eq. (1) is explicitly

achieved by performing multivariate polynomial division,
yielding an expression ofNi1···in in terms of denominators
and residues.
We construct a Gröbner basis [17–20] generating the ideal
Ji1···in with respect to a chosen monomial ordering,

Gi1···in = {g1(z), . . . , gm(z)} . (5)

In our formalism, the n-ple cut-conditions Di1 = . . . =
Din = 0, are equivalent to g1 = . . . = gm = 0. The
number m of elements of the Gröbner basis is the cardi-
nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of
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nality of the basis. In general, m is different from n. We
then consider the multivariate division of Ni1···in modulo
Gi1···in ,

Ni1···in(z) = Γi1···in +∆i1···in(z) , (6)

where Γi1···in =
∑m

i=1 Qi(z)gi(z) is a compact notation
for the sum of the products of the quotients Qi and the
divisors gi. The polynomial ∆i1···in is the remainder of

2

integrand recurrence relation that generates the required
multi-particle pole decomposition for arbitrary ampli-
tudes, independently of the number of loops.
The algorithm treats the numerator and the denomi-

nators of any Feynman integrand, as multivariate poly-
nomials in the components of the loop variables. It uses
both the weak Nullstellensatz theorem [17] and the multi-
variate polynomial division modulo appropriate Gröbner
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Unless otherwise indicated, we will assume lexicographic order.

In this formalism, the n-ple cut-conditions Di1 = . . . = Din = 0, are equivalent to

g1 = . . . = gm = 0.

Di1 = . . . = Din = 0 , g1 = . . . = gm = 0

The number m of elements of the Gröbner basis is the cardinality of the basis. In

general, m is di↵erent from n. We then consider the multivariate division of Ni1···in modulo

Gi1···in (see Ch. 2, Thm. 3 of [?]),

Ni1···in(z) = �i1···in +�i1···in(z) , (2.5)

where �i1···in =
Pm

i=1Qi(z)gi(z) is a compact notation for the sum of the products of the

quotients Qi and the divisors gi. The polynomial �i1···in is the remainder of the division.

Since Gi1···in is a Gröbner basis, the remainder is uniquely determined once the monomial

order is fixed.

The term �i1···in belongs to the ideal Ji1···in , thus it can be expressed in terms of denomi-

nators, as

�i1···in =
nX

=1

Ni1···i�1i+1···in(z)Di(z) . (2.6)

The explicit form ofNi1···i�1i+1···in can be found by expressing the elements of the Gröbner

basis in terms of the denominators.

2.1 Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point inte-

grands: that happens when the numerator can be written in terms of denominators. The

concept of reducibility can be formalized in algebraic geometry. Indeed a direct consequence

of Eqs. (2.5) and (2.6) is the following

Proposition 2.1. The integrand Ii1···in is reducible i↵ the remainder of the division modulo

a Gröbner basis vanishes, i.e. i↵ Ni1···in 2 Ji1···in.

Proposition 2.1 allows to prove

Proposition 2.2. Any n-particle integrand with n > 4` is reducible.

Proof. In this case, the system is over-constrained, namely the number n of equations is

larger than the number 4` of indeterminates. The n propagators cannot vanish simultane-

ously, i.e.

Di1(z) = · · · = Din(z) = 0 (2.7)

has no solution. Therefore, according to the weak Nullstellensatz theorem

1 =
nX

=1

w(z)Di(z) 2 Ji1···in , (2.8)
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5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators
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which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,
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both the weak Nullstellensatz theorem [17] and the multi-
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basis [17–20]. In the context of the integrand reduction,
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• By iterating this procedure, we extract the polyno-
mial forms of all residues. The algorithm will stop
when all cuts are exhausted, and no denominator
is left, leaving us with the integrand reduction for-
mula.

In Section III we apply the algorithm to a generic one-
loop integrand, reproducing the d-dimensional integrand
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In Section IV we conclude by proving a theorem
on the maximum-cuts, i.e. the cuts defined by the
maximum number of on-shell conditions which can be
simultaneously satisfied by the loop momenta. The
on-shell conditions of a maximum cut lead to a zero-
dimensional system. The Finiteness Theorem [17] and
the Shape Lemma [19, 20, 25, 26] ensure that residue
at the maximum-cut is parametrised by ns coefficients,
where ns is the number of solutions of the multiple
cut-conditions. This guarantees that the corresponding
residue can always be reconstructed by evaluating the
numerator at the solutions of the cut.
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the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4!
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4! of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.

3

the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4!
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4! of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.

Unless otherwise indicated, we will assume lexicographic order.

In this formalism, the n-ple cut-conditions Di1 = . . . = Din = 0, are equivalent to

g1 = . . . = gm = 0.

Di1 = . . . = Din = 0 , g1 = . . . = gm = 0

The number m of elements of the Gröbner basis is the cardinality of the basis. In

general, m is di↵erent from n. We then consider the multivariate division of Ni1···in modulo

Gi1···in (see Ch. 2, Thm. 3 of [?]),

Ni1···in(z) = �i1···in +�i1···in(z) , (2.5)

where �i1···in =
Pm

i=1Qi(z)gi(z) is a compact notation for the sum of the products of the

quotients Qi and the divisors gi. The polynomial �i1···in is the remainder of the division.

Since Gi1···in is a Gröbner basis, the remainder is uniquely determined once the monomial

order is fixed.

The term �i1···in belongs to the ideal Ji1···in , thus it can be expressed in terms of denomi-

nators, as

�i1···in =
nX

=1

Ni1···i�1i+1···in(z)Di(z) . (2.6)

The explicit form ofNi1···i�1i+1···in can be found by expressing the elements of the Gröbner

basis in terms of the denominators.

2.1 Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be written in terms of lower-point inte-

grands: that happens when the numerator can be written in terms of denominators. The

concept of reducibility can be formalized in algebraic geometry. Indeed a direct consequence

of Eqs. (2.5) and (2.6) is the following

Proposition 2.1. The integrand Ii1···in is reducible i↵ the remainder of the division modulo

a Gröbner basis vanishes, i.e. i↵ Ni1···in 2 Ji1···in.

Proposition 2.1 allows to prove

Proposition 2.2. Any n-particle integrand with n > 4` is reducible.

Proof. In this case, the system is over-constrained, namely the number n of equations is

larger than the number 4` of indeterminates. The n propagators cannot vanish simultane-

ously, i.e.

Di1(z) = · · · = Din(z) = 0 (2.7)

has no solution. Therefore, according to the weak Nullstellensatz theorem

1 =
nX

=1

w(z)Di(z) 2 Ji1···in , (2.8)
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5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D
0

= D
1

= . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

6. Polynomial Division

Ji1...in = hg
1

, . . . , gmi ⌘
⇢ mX

=1

h̃(z)g(z) : h̃(z) 2 P [z]

�
(6.1)

Ni1...in

Di1 · · ·Din
=

nX

=1

Ni1...i�1i+1...in Di

Di1 · · ·Di�1DiDi+1 · · ·Din
+

�i1...in

Di1 · · ·Din
(6.2)

7. Spinors

pµ =
hp|�µ|p]

2
qµ =

hq|�µ|q]
2

(7.1)

✏µ
+

=
hp|�µ|q]

2
✏µ� =

hq|�µ|p]
2

(7.2)

p2 = q2 = ✏2i = 0

(7.3)

✏
+

· ✏� = �p · q (7.4)
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3

the division. Since Gi1···in is a Gröbner basis, the remain-
der is uniquely determined once the monomial ordering
is fixed [17–20].
The term Γi1···in belongs to the ideal Ji1···in , thus it can
be expressed in terms of denominators, as

Γi1···in =
n
∑

κ=1

Ni1···iκ−1iκ+1···in(z)Diκ (z) . (7)

The explicit form of Ni1···iκ−1iκ+1···in can be found by
expressing the elements of the Gröbner basis in terms of
the denominators.

A. Reducibility criterion.

An integrand Ii1···in is said to be reducible if it can be
written in terms of lower-point integrands: that happens
when the numerator can be written in terms of denom-
inators. The concept of reducibility can be formalized
in algebraic geometry. Indeed a direct consequence of
Eqs. (6) and (7) is the following

Proposition II.1 The integrand Ii1···in is reducible iff
the remainder of the division modulo a Gröbner basis
vanishes, i.e. iff Ni1···in ∈ Ji1···in .

Proposition II.1 allows to prove

Proposition II.2 Any n-particle integrand with n > 4!
is reducible.

Proof. In this case, the system is over-constrained,
namely the number n of equations is larger than the
number 4! of indeterminates. The n propagators can-
not vanish simultaneously, i.e.

Di1(z) = · · · = Din(z) = 0 (8)

has no solution. Therefore, according to the weak Null-
stellensatz theorem [17],

1 =
n
∑

κ=1

wκ(z)Diκ (z) ∈ Ji1···in , (9)

for some ωκ ∈ P [z]. Irrespective of the monomial or-
dering, a (reduced) Gröbner basis is G = {g1} = {1}.
Eq. (6) becomes

Ni1···in(z) = Ni1···in(z) × 1 ∈ Ji1···in , (10)

thus Ii1···in is reducible.

B. Integrand Recursion Formula

After substituting Eqs. (6) and (7) in Eq. (3), we
get a non-homogeneous recurrence relation for the n-
denominator integrand,

Ii1···in =
k
∑

κ=1

Ii1···iκ−1iκ+1in +
∆i1···in

Di1 · · ·Din

. (11)

According to Eq. (11), Ii1···in is expressed in terms
of integrands, Ii1···iκ−1iκ+1in , with (n − 1) denomina-
tors. Ii1···iκ−1iκ+1in are obtained from Ii1···in by pinch-
ing the iκ-th denominator. The numerator of the non-
homogeneous term is the remainder ∆i1···in of the divi-
sion (6). By construction, it contains only irreducible
monomials with respect to Gi1···in , thus it is identified
with the residue at the cut (i1 . . . in).
The integrands Ii1···iκ−1iκ+1···in can be decomposed re-

peating the procedure described in Eqs. (3)-(6). In this
case the polynomial division of Ni1···iκ−1iκ+1···in has to
be performed modulo the Gröbner basis of the ideal
Ji1···iκ−1iκ+1···in , generated by the corresponding (n− 1)
denominators.
The complete multi-pole decomposition of the in-

tegrand Ii1···in is achieved by successive iterations of
Eqs. (3)-(6). Like an Erathostene’s sieve, the recursive
application of Eqs. (6) and (11) extracts the unique struc-
tures of the remainders ∆’s. The procedure naturally
stops when all cuts are exhaused, and no denominator is
left, leaving us with the integrand reduction formula.
If all quotients of the last divisions vanish, the inte-

grand is cut-constructible, i.e. it can be determined by
sampling the numerator on the solutions of the cuts. If
the quotients do not vanish, they give rise to non-cut-
constructible terms, i.e. terms vanishing at every multi-
pole. They can be reconstructed by sampling the numer-
ator away from the cuts. Non-cut-constractible terms
may occur in non-renormalizable theories, where the rank
of the numerator is higher than the number of denomi-
nators [21].

The Proposition II.2 and the recurrence relation (11)
are the two mathematical properties underlying the inte-
grand decomposition of any scattering amplitudes. The
polynomial form of each residue is univocally derived
from the division modulo the Gröbner basis of the corre-
sponding cut.

III. ONE-LOOP INTEGRAND
DECOMPOSITION

In this section we decompose an n-point integrand
I0···(n−1) of rank-n with n > 5, using the procedure de-
scribed in Section II. The reduction of higher-rank and/or
lower-point integrands proceed along the same lines.

In d-dimensions, the generic n-point one-loop inte-
grand reads as follows:

I0···(n−1) ≡
N0···(n−1)(q, µ

2)

D0(q, µ2) · · ·Dn−1(q, µ2)
. (12)

We closely follow the notation of [21, 31]. Objects living
in d = 4 − 2ε are denoted by a bar, e.g. /̄q = /q + /µ and
q̄2 = q2 − µ2.

For later convenience, for each Ii1···ik we define a basis
E(i1···ik) = {ei}i=1,...,4.

n-denominator
integrand

(n-1)-denominator
integrand

remainder = residue
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We present the integrand reduction via multivariate polynomial division as a natural technique
to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the
integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of
loops and external legs, which can be used to obtain the decomposition of any integrand analytically
with a finite number of algebraic operations. The general results are illustrated by applications to
two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can
also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

Introduction – In the perturbative approach to quan-
tum field theories, the elements of the scattering matrix,
which are the scattering amplitudes, can be expressed in
terms of Feynman diagrams. The latter generally rep-
resent multiple integrals whose integrand is a rational
function of the integration variables. Scattering ampli-
tudes are analytic functions of the kinematic variables of
the interacting particles, hence they are determined by
their singularities, whose location in the complex plane
is specified by a set of algebraic equations. The analysis
of the singularity structure can be used to define the dis-
continuities of a Feynman integral across the branch cuts
attached to the Landau singularities. They are encoded
in the Cutkosky formula and correspond to the unitarity
conditions of the scattering amplitude. In the canonical
formalism, the unitarity cut conditions have been used
for the evaluation of the scattering amplitudes trough
dispersive Cauchy’s integral representations. However,
the dispersive approach is well known to su↵er from am-
biguities which limit its applicability for the quantitative
evaluation of generic Feynman integrals in gauge theo-
ries.

In the more modern interpretation of unitarity, cut
conditions and analyticity are successfully exploited for
decomposing scattering amplitudes in terms of indepen-
dent functions – rather than for their direct evaluation.
The basic functions entering the amplitudes decomposi-
tion are univocally characterised by their singularities.
The singularity structure can be accessed before inte-
gration, at the integrand level [1, 2]. Therefore, the
decomposition of the integrated amplitudes can be de-
duced from the the decomposition of the corresponding
integrands. The integrand-reduction methods [1–7] rely
on the existence of a relation between the numerator and
the denominators of each Feynman integral. A generic
numerator can be expressed as a combination of (prod-
ucts of) denominators, multiplied by polynomial coe�-
cients, which correspond to the residues at the multiple
cuts of the diagrams. The multiple-cut conditions, gen-
erally fulfilled for complex values of the integration vari-

Figure 1. Integrand recurrence relation for a generic `-loop
integrand.

ables, can be viewed as projectors isolating each residue.
The latter, depicted as an on-shell cut diagram, repre-
sents the amplitude factorized into a product of simpler
amplitudes, either with fewer loops or a lower number of
legs.
The residues are multivariate polynomials in those

components of the propagating momenta which corre-
spond to irreducible scalar products (ISPs), that cannot
be decomposed in terms of denominators. The ISPs ei-
ther yield spurious contributions, which vanish upon in-
tegration, or generate the basic integrals entering the am-
plitude decomposition [2, 4].
Within the integrand reduction methods, the problem

of decomposing any scattering amplitude in terms of in-
dependent integrals is therefore reduced to the algebraic
problem of reconstructing the residues at its multiple
cuts.
In Refs. [6, 7] the determination of the residues at the

multiple cuts has been formulated as a problem of mul-
tivariate polynomial division, and solved using algebraic
geometry techniques. These techniques allowed one to
prove that the integrand decomposition, originally formu-
lated for one-loop amplitudes [1], is valid and applicable
at any order in perturbation theory, irrespective of the
complexity of the topology of the involved diagrams, be-
ing them massless or massive, planar or non planar. This
novel reduction algorithm has been applied to the decom-
position of supersymmetric amplitudes at two and three
loops [8, 9]. Also, it has been used for the identification
of the two-loop integrand basis in four dimensions [10],
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3

+ bN
i1···i1 ··· in···incJi1i2···in

. (5)

The normal form of the numerator is not in the ideal J ,
thus it cannot be expressed in terms of the denominators
and it is identified with the residue of the multiple cut
D

a1
i1

= · · · = D

an
in

= 0,

bN
i1···i1 ··· in···incJi1i2···in

= �
i1···i1 ··· in···in , (6)

belonging to the quotient ring P [z]/J . The term �, in-
stead, belongs to the ideal J , thus it can be written as

�
i1···i1 ··· in···in =

nX

k=1

Ni1 · · · i1
| {z }

a1

... ik · · · ik
| {z }
ak�1

... in · · · in
| {z }

an

D

ik . (7)

Substituting Eqs. (5), (6), and (7) in Eq. (1), we obtain

Ii1 · · · i1
| {z }

a1

... in · · · in
| {z }

an

=
nX

k=1

Ii1 · · · i1
| {z }

a1

... ik · · · ik
| {z }
ak�1

... in · · · in
| {z }

an

+

+
�

i1···i1 ··· in···in
D

a1
i1

· · ·Dak
in

, (8)

which is a non-homogeneous recurrence relation express-
ing a given integrand in terms of integrands with fewer
denominators. it is the generalization of the recurrence
relation of Ref. [7], valid for arbitrary powers of the de-
nominators. Its pictorial representation is shown in Fig-
ure 1. Within the divide-and-conquer approach, the inte-
grand reduction formula becomes an elegant and power-
ful tool to perform the analytic decomposition of multi-
loop integrals through a top-down procedure starting
from the integrand with the highest number of denomi-
nators. It is worth noticing that, in this algorithm, the
presence of multiple denominators is reflected by the fact
that the division modulo the ideal J

i1···in enters the pro-
cedure a1 ⇥ · · ·⇥ a

n

times.

In the following we apply the divide-and-conquer ap-
proach to some two- and three-point two-loop diagrams
appearing in QED and QCD radiative corrections. The
divergences have been regularized within the ’t Hooft–
Veltman scheme and the computation has been carried
out in the Feynman gauge. The decompositions have
been verified by using the N = N global test [1, 13, 14].

Photon vacuum polarization – As a first example we
consider the two-loop contributions to the transverse part
⇧(k2) of the vacuum polarization in QED with a massive
fermion [15]. The integrand of ⇧(k2) gets contributions
from the three self-energy diagrams in the first row of
Figure 2. The d-dimensional loop momenta q̄

i

are split
into a 4-dimensional and (�2 ✏)-dimensional part, q̄
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, with q
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Figure 2. First row: diagrams leading to the two-loop QED
corrections to the photon self energy. Second row: two-loop
diagrams entering the QCD corrections to gg ! H in the
heavy top mass approximation.
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erating the procedure twice,

N (a)
12345 =�12345 +�1235D4 +�2345D1 +�1345D2

+�1245D3 +�1234D5 +�123D4D5

+�124D3D5 +�134D2D5 +�234D1D5

+�125D3D4 +�135D2D4 +�245D1D3

+�345D1D2 +�145D2D3 +�235D1D4

+�13D2D4D5 +�24D1D3D5

+�14D2D3D5 +�23D1D4D5 . (12)

The residues in Eq. (12) read as follows:

�12345 = 8
�
4m4 � k

4 + k

2 (k2 � 2m2) ✏
�
,

3

+ bN
i1···i1 ··· in···incJi1i2···in

. (5)

The normal form of the numerator is not in the ideal J ,
thus it cannot be expressed in terms of the denominators
and it is identified with the residue of the multiple cut
D

a1
i1

= · · · = D

an
in

= 0,

bN
i1···i1 ··· in···incJi1i2···in

= �
i1···i1 ··· in···in , (6)

belonging to the quotient ring P [z]/J . The term �, in-
stead, belongs to the ideal J , thus it can be written as

�
i1···i1 ··· in···in =

nX

k=1

Ni1 · · · i1
| {z }

a1

... ik · · · ik
| {z }
ak�1

... in · · · in
| {z }

an

D

ik . (7)

Substituting Eqs. (5), (6), and (7) in Eq. (1), we obtain

Ii1 · · · i1
| {z }

a1

... in · · · in
| {z }

an

=
nX

k=1

Ii1 · · · i1
| {z }

a1

... ik · · · ik
| {z }
ak�1

... in · · · in
| {z }

an

+

+
�

i1···i1 ··· in···in
D

a1
i1

· · ·Dak
in

, (8)
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denominators. it is the generalization of the recurrence
relation of Ref. [7], valid for arbitrary powers of the de-
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Veltman scheme and the computation has been carried
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been verified by using the N = N global test [1, 13, 14].
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consider the two-loop contributions to the transverse part
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Figure 2. First row: diagrams leading to the two-loop QED
corrections to the photon self energy. Second row: two-loop
diagrams entering the QCD corrections to gg ! H in the
heavy top mass approximation.
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According to our algorithm, the first step of the reduction

requires the division N (a)
12345/G12345, whose result reads as

N (a)
12345 =�12345 +N1235D4 +N2345D1 +N1345D2

+N1245D3 +N1234D5 . (10)

In the second step, the numerators N
i1i2i3i4 are reduced

performing the division N
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Multi-Loop Integrand Decomposition



Knowing the parametric form of residues is 
mandatory!!!

 Parametric form of the residues
is process independent.

 Actual values of the coefficients
is process dependent.

Use your favorite generator 
(how about GoSam?),  
and sample I(q’s) as many time as the 
number of unknown coefficients
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We present the integrand reduction via multivariate polynomial division as a natural technique
to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the
integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of
loops and external legs, which can be used to obtain the decomposition of any integrand analytically
with a finite number of algebraic operations. The general results are illustrated by applications to
two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can
also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

Introduction – In the perturbative approach to quan-
tum field theories, the elements of the scattering matrix,
which are the scattering amplitudes, can be expressed in
terms of Feynman diagrams. The latter generally rep-
resent multiple integrals whose integrand is a rational
function of the integration variables. Scattering ampli-
tudes are analytic functions of the kinematic variables of
the interacting particles, hence they are determined by
their singularities, whose location in the complex plane
is specified by a set of algebraic equations. The analysis
of the singularity structure can be used to define the dis-
continuities of a Feynman integral across the branch cuts
attached to the Landau singularities. They are encoded
in the Cutkosky formula and correspond to the unitarity
conditions of the scattering amplitude. In the canonical
formalism, the unitarity cut conditions have been used
for the evaluation of the scattering amplitudes trough
dispersive Cauchy’s integral representations. However,
the dispersive approach is well known to su↵er from am-
biguities which limit its applicability for the quantitative
evaluation of generic Feynman integrals in gauge theo-
ries.

In the more modern interpretation of unitarity, cut
conditions and analyticity are successfully exploited for
decomposing scattering amplitudes in terms of indepen-
dent functions – rather than for their direct evaluation.
The basic functions entering the amplitudes decomposi-
tion are univocally characterised by their singularities.
The singularity structure can be accessed before inte-
gration, at the integrand level [1, 2]. Therefore, the
decomposition of the integrated amplitudes can be de-
duced from the the decomposition of the corresponding
integrands. The integrand-reduction methods [1–7] rely
on the existence of a relation between the numerator and
the denominators of each Feynman integral. A generic
numerator can be expressed as a combination of (prod-
ucts of) denominators, multiplied by polynomial coe�-
cients, which correspond to the residues at the multiple
cuts of the diagrams. The multiple-cut conditions, gen-
erally fulfilled for complex values of the integration vari-

Figure 1. Integrand recurrence relation for a generic `-loop
integrand.

ables, can be viewed as projectors isolating each residue.
The latter, depicted as an on-shell cut diagram, repre-
sents the amplitude factorized into a product of simpler
amplitudes, either with fewer loops or a lower number of
legs.
The residues are multivariate polynomials in those

components of the propagating momenta which corre-
spond to irreducible scalar products (ISPs), that cannot
be decomposed in terms of denominators. The ISPs ei-
ther yield spurious contributions, which vanish upon in-
tegration, or generate the basic integrals entering the am-
plitude decomposition [2, 4].
Within the integrand reduction methods, the problem

of decomposing any scattering amplitude in terms of in-
dependent integrals is therefore reduced to the algebraic
problem of reconstructing the residues at its multiple
cuts.
In Refs. [6, 7] the determination of the residues at the

multiple cuts has been formulated as a problem of mul-
tivariate polynomial division, and solved using algebraic
geometry techniques. These techniques allowed one to
prove that the integrand decomposition, originally formu-
lated for one-loop amplitudes [1], is valid and applicable
at any order in perturbation theory, irrespective of the
complexity of the topology of the involved diagrams, be-
ing them massless or massive, planar or non planar. This
novel reduction algorithm has been applied to the decom-
position of supersymmetric amplitudes at two and three
loops [8, 9]. Also, it has been used for the identification
of the two-loop integrand basis in four dimensions [10],
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The normal form of the numerator is not in the ideal J ,
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belonging to the quotient ring P [z]/J . The term �, in-
stead, belongs to the ideal J , thus it can be written as
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Substituting Eqs. (5), (6), and (7) in Eq. (1), we obtain
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which is a non-homogeneous recurrence relation express-
ing a given integrand in terms of integrands with fewer
denominators. it is the generalization of the recurrence
relation of Ref. [7], valid for arbitrary powers of the de-
nominators. Its pictorial representation is shown in Fig-
ure 1. Within the divide-and-conquer approach, the inte-
grand reduction formula becomes an elegant and power-
ful tool to perform the analytic decomposition of multi-
loop integrals through a top-down procedure starting
from the integrand with the highest number of denomi-
nators. It is worth noticing that, in this algorithm, the
presence of multiple denominators is reflected by the fact
that the division modulo the ideal J

i1···in enters the pro-
cedure a1 ⇥ · · ·⇥ a

n

times.

In the following we apply the divide-and-conquer ap-
proach to some two- and three-point two-loop diagrams
appearing in QED and QCD radiative corrections. The
divergences have been regularized within the ’t Hooft–
Veltman scheme and the computation has been carried
out in the Feynman gauge. The decompositions have
been verified by using the N = N global test [1, 13, 14].

Photon vacuum polarization – As a first example we
consider the two-loop contributions to the transverse part
⇧(k2) of the vacuum polarization in QED with a massive
fermion [15]. The integrand of ⇧(k2) gets contributions
from the three self-energy diagrams in the first row of
Figure 2. The d-dimensional loop momenta q̄

i

are split
into a 4-dimensional and (�2 ✏)-dimensional part, q̄
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Figure 2. First row: diagrams leading to the two-loop QED
corrections to the photon self energy. Second row: two-loop
diagrams entering the QCD corrections to gg ! H in the
heavy top mass approximation.

The integrand of the diagram (a) is
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According to our algorithm, the first step of the reduction

requires the division N (a)
12345/G12345, whose result reads as
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12345 is obtained by it-
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+�125D3D4 +�135D2D4 +�245D1D3

+�345D1D2 +�145D2D3 +�235D1D4

+�13D2D4D5 +�24D1D3D5

+�14D2D3D5 +�23D1D4D5 . (12)

The residues in Eq. (12) read as follows:

�12345 = 8
�
4m4 � k

4 + k

2 (k2 � 2m2) ✏
�
,

3

+ bN
i1···i1 ··· in···incJi1i2···in

. (5)

The normal form of the numerator is not in the ideal J ,
thus it cannot be expressed in terms of the denominators
and it is identified with the residue of the multiple cut
D

a1
i1

= · · · = D

an
in

= 0,

bN
i1···i1 ··· in···incJi1i2···in

= �
i1···i1 ··· in···in , (6)

belonging to the quotient ring P [z]/J . The term �, in-
stead, belongs to the ideal J , thus it can be written as

�
i1···i1 ··· in···in =

nX

k=1

Ni1 · · · i1
| {z }

a1

... ik · · · ik
| {z }
ak�1

... in · · · in
| {z }

an

D

ik . (7)

Substituting Eqs. (5), (6), and (7) in Eq. (1), we obtain

Ii1 · · · i1
| {z }

a1

... in · · · in
| {z }

an

=
nX

k=1

Ii1 · · · i1
| {z }

a1

... ik · · · ik
| {z }
ak�1

... in · · · in
| {z }

an

+

+
�

i1···i1 ··· in···in
D

a1
i1

· · ·Dak
in

, (8)

which is a non-homogeneous recurrence relation express-
ing a given integrand in terms of integrands with fewer
denominators. it is the generalization of the recurrence
relation of Ref. [7], valid for arbitrary powers of the de-
nominators. Its pictorial representation is shown in Fig-
ure 1. Within the divide-and-conquer approach, the inte-
grand reduction formula becomes an elegant and power-
ful tool to perform the analytic decomposition of multi-
loop integrals through a top-down procedure starting
from the integrand with the highest number of denomi-
nators. It is worth noticing that, in this algorithm, the
presence of multiple denominators is reflected by the fact
that the division modulo the ideal J

i1···in enters the pro-
cedure a1 ⇥ · · ·⇥ a

n

times.

In the following we apply the divide-and-conquer ap-
proach to some two- and three-point two-loop diagrams
appearing in QED and QCD radiative corrections. The
divergences have been regularized within the ’t Hooft–
Veltman scheme and the computation has been carried
out in the Feynman gauge. The decompositions have
been verified by using the N = N global test [1, 13, 14].

Photon vacuum polarization – As a first example we
consider the two-loop contributions to the transverse part
⇧(k2) of the vacuum polarization in QED with a massive
fermion [15]. The integrand of ⇧(k2) gets contributions
from the three self-energy diagrams in the first row of
Figure 2. The d-dimensional loop momenta q̄

i

are split
into a 4-dimensional and (�2 ✏)-dimensional part, q̄

i

=
q

i

+ ~µ

i

, with q

i

· ~µ
j

= 0 and ~µ

i

· ~µ
j

⌘ µ

2
ij

. In this case the
variables z are µ

2
11, µ

2
22, µ

2
12 and the components of q

i

in
the basis {k, k?, e3, e4}, such that

k

2
? 6= 0 6= e3 · e4 , k · k? = k · e

j

= k? · e
j

= e

2
j

= 0 .

Figure 2. First row: diagrams leading to the two-loop QED
corrections to the photon self energy. Second row: two-loop
diagrams entering the QCD corrections to gg ! H in the
heavy top mass approximation.

The integrand of the diagram (a) is

I(a)
12345 =

1

3� 2 ✏

N (a)
12345

D1D2D3D4D5
, (9)

while its denominators are

D1 = q̄

2
1 �m

2
, D2 = (q̄1 + k)2 �m

2
,

D3 = q̄

2
2 �m

2
, D4 = (q̄2 + k)2 �m

2
,

D5 = (q̄1 � q̄2)
2
.

According to our algorithm, the first step of the reduction

requires the division N (a)
12345/G12345, whose result reads as

N (a)
12345 =�12345 +N1235D4 +N2345D1 +N1345D2

+N1245D3 +N1234D5 . (10)

In the second step, the numerators N
i1i2i3i4 are reduced

performing the division N
i1i2i3i4/Gi1i2i3i4 ,

N (a)
12345 =�12345 +�1235D4 +�2345D1 +�1345D2

+�1245D3 +�1234D5 +N123D4D5

+N124D3D5 +N134D2D5 +N234D1D5

+N125D3D4 +N135D2D4 +N245D1D3

+N345D1D2 +N145D2D3 +N235D1D4 . (11)

The complete decomposition of N (a)
12345 is obtained by it-

erating the procedure twice,

N (a)
12345 =�12345 +�1235D4 +�2345D1 +�1345D2

+�1245D3 +�1234D5 +�123D4D5

+�124D3D5 +�134D2D5 +�234D1D5

+�125D3D4 +�135D2D4 +�245D1D3

+�345D1D2 +�145D2D3 +�235D1D4

+�13D2D4D5 +�24D1D3D5

+�14D2D3D5 +�23D1D4D5 . (12)

The residues in Eq. (12) read as follows:

�12345 = 8
�
4m4 � k

4 + k

2 (k2 � 2m2) ✏
�
,

just apply the polynomial division 
to the integrand you want to reduce:

analytic/algebraic reduction
 No need for the explicit cut-solutions
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Application at one-loop

Choice of 4-dimensional basis for an m-point residue

e2

1

= e2

2

= 0 , e
1

· e
2

= 1 , e2

3

= e2

4

= �m4

, e
3

· e
4

= �(1 � �m4

)

Coordinates: z = (z
1

, z
2

, z
3

, z
4

, z
5

) ⌘ (x
1

, x
2

, x
3

, x
4

, µ2)

qµ
4-dim

= �pµi
1

+ x
1

eµ
1

+ x
2

eµ
2

+ x
3

eµ
3

+ x
4

eµ
4

, q2 = q2

4-dim

� µ2

Generic numerator

Ni
1

···im =
X

j
1

,...,j
5

↵~j z j
1

1

z j
2

2

z j
3

3

z j
4

4

z j
5

5

, (j
1

. . . j
5

) such that rank(Ni
1

···im )  m

Residues

�i
1

i
2

i
3

i
4

i
5

= c
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�i
1

i
2

i
3

i
4

= c
0

+ c
1

x
4

+ µ2(c
2

+ c
3

x
4

+ µ2c
4

)

�i
1

i
2

i
3
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1

x
3
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2
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3

+ c
3
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+ c
4

x
4
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5
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4
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x3

4

+ µ2(c
7
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8

x
3
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9

x
4

)

�i
1

i
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1

x
2
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2

x
3
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3

x
4
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4

x2
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+ c
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+ c
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�i
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1

x
1

+ c
2

x
2
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3

x
3
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4

x
4

It can be easily extended to higher-rank numerators
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The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫

ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4− 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).
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means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number

of solutions of the cut itself.

6. Some stu↵

Aone�loop

n =

Z
d

�2✏
µ

Z
d

4

q An(q, µ
2) , An(q, µ

2) ⌘ Nn(q, µ2)

D̄

0

D̄

1

· · · D̄n�1

(6.1)

An(q, µ
2) 6= c
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New Methods for Scattering
Amplitudes in Gauge Theories

Abstract

Our research focuses on the development of integrand reduction methods for the evaluation of multi-loop scattering amplitudes in quantum field theories (QFTs). We have developed a coherent
mathematical framework for the integrand decomposition of Feynman graph integrals, based on algebraic geometry. This method is applicable both for phenomenological studies and for the
investigation of more formal properties of QFTs. Our algorithm has been implemented in the reduction libraries of the GOSAM package, a tool dedicated to the evaluation of one-loop amplitudes,
and used for phenomenological analyses relevant for the LHC. We demonstrate the completeness of our reduction algorithm by applying it to generic dimensionally regulated massive multi-loop
integrals in gauge theories.

Introduction

Scattering amplitudes in Quantum Field Theories:
• analytic functions of kinematic variables, determined by

their singularity structure
– accessible via graph techniques

(on-shell conditions $ cut-diagrams)
• decomposed in terms of independent (ir)rational or tran-

scendental functions, according to the number of loops

Generalized unitarity cuts as projectors isolating each
function through its analytic structure

Integrand reduction methods:
• based on generalized unitarity
• yield the decomposition of the amplitude from integrating

the decomposition of the integrands
• rely on the integrand reduction master formula:

– numerators of Feynman integrals as a combination of
(products of) denominators

– the residues at the multiple cuts are the coefficients of
the combination

· amplitude decomposition , algebraic problem
· i.e. the determination of the residues of the multiple cuts

Integrand reduction

Generic `-loop integral:

Mn =

Z
ddq1 . . . d

dq` Ii
1

...in, Ii
1

...in ⌘
Ni

1

...in

Di
1

. . . Din

• The numerator Ni
1

...in $ polynomial in qi

• The denominators Di $ (quadratic) polynomials in qi

The integrand-reduction method leads to:

Ii
1

...in =
�i

1

···in
Di

1

. . . Din
+ . . . +

nX

k=1

�ik

Dik
+ �;

• The residues �i
1

...ik $ polynomials in qi

– topology-dependent parametric form (independent of
the numerators)

– the coefficients of the parametrization are process-
dependent

Integrand-reduction via multivariate division:
• Trade (q1, . . . , q`) with their coordinates z ⌘ (z1, . . . , zm)

• Define the Ideal

I ⌘ hDi
1

, . . . , Dini =

8
<

:p(z) : p(z) =
X

j

hj(z)Dj(z)

9
=

;

– p(z) and hj(z) $ multivariate polynomials in z

• Take a Gröbner basis GI of I

GI = {g1, . . . , gs} such that I = hg1, . . . , gsi

• Perform the multivariate division Ni
1

...in/GI

Ni1...in =
X

k

Ni1···ik�1ik+1···in Dk + �i1...in

Ii1...in =
X

k

Ii1···ik�1ik+1···in +
�i1...in

Di1 . . .Din

· remainder of the division $ residue of Di
1

, . . . , Din
· recursive relation for the integrand decomposition

Two approaches to integrand reduction:
• Fit-on-the-cut approach

– use generic N to get the parametric form of the �’s
– determine the coefficients sampling on the cuts

• Divide-and-Conquer approach
– generate the N of the process
– compute the residues iteratively
– no multiple-cut solutions needed

From integrand to integral by integrating:

Mn =

Z
ddq1 . . . d

dq`

0

@ �i
1

···in
Di

1

. . . Din
+ . . . +

nX

k=1

�ik

Dik
+ �;

1

A

• spurious terms vanish upon integration
• other terms lead to Master Integrals (MIs)

One loop

The d-dimensional decomposition is:

From Amplitudes to observables:

• (NLO event generator) = (GoSam) + (Monte Carlo)
• Interface GoSam – Monte Carlo:

– via Binoth Les Houches Accord
– implemented for Madevent, Powheg, and Sherpa

Integrand reduction via Laurent expansion:
• Uses asymptotic limits to simplify the reconstruction
• Main features:

– fewer coefficients have to be determined
– the subtraction works at the coefficient level

· faster and more stable algorithm
• Implemented in the C++ library Ninja

– semi-numerical implementation via polynomial division
– interfaced with the GoSam package

• Application: p p ! t t̄ H + 1 jet

ed + 1894 diagrams  0
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Integrand reduction and higher rank numerators:
• Higgs production via gluon fusion

– in the mt ! 1 limit

– leads to integrands with rank = (# denominators) +1
• Extension of the algorithm

– new coefficients enter the residues �j
1

···jk
– extended sampling implemented in Samurai
– extended Laurent expansion implemented in Ninja

• Application: p p ! H + 2 jets

ed + 925 diagrams

• Application: p p ! H + 3 jets

ed + 13178 diagrams
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Higher loops

Reduction of N = 4 SYM and N = 8 SUGRA amplitudes

• Fit-on-the-cut approach
• Unitarity-based construction of the integrand
• Illustrative example:

Reduction of the photon self-energy diagrams in QED

• Divide-and-conquer approach
• d-dimensional rank-four numerators
• Massive particle in the loop
• Reduction in presence of higher powers of propagators

Maximum Cut Theorem
• Maximum Cut : cut constraining all the qi’s

– Assumption: ns non-degenerate solutions
Theorem The residue is parametrized by ns coefficients.
Theorem It exists an univariate polynomial representation
• Examples
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The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫

ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4− 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).
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means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number

of solutions of the cut itself.
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tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.
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work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic
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One-Loop Integrand Decomposition
Finally, we arrive at

M(n1, n2) =
Γ(−d/2 + n1 + n2)Γ(d − n1 − 2n2)

Γ(n1)Γ(d − n1 − n2)
. (6.11)

The denominator in (6.9) behaves as (k2)n1+n2 at k → ∞. Therefore, the integral
diverges if d ≥ 2(n1 + n2). At d → 4 this means n1 + n2 ≤ 2. This ultraviolet divergence
shows itself as a 1/ε pole of the first Γ function in the numerator of (6.11) (this Γ function
depends on n1 + n2, i.e., on the behaviour of the integrand at k → ∞). The integral (6.9)
can also have infrared divergences. Its denominator behaves as kn1+2n2 at k → 0, and the
integral diverges in this region if d ≤ n1 + 2n2. At d → 4 this means n1 + 2n2 ≥ 4. This
infrared divergence shows itself as a 1/ε pole of the second Γ function in the numerator
of (6.11) (this Γ function depends on n1 + 2n2, i.e., on the behaviour of the integrand at
k → 0).

Figure 50: One-loop on-shell propagator diagram

Figure 51: The basis integral

Let’s summarize. There is one generic topology of one-loop massive on-shell propagator
diagrams in QED and QCD (Fig. 50). All Feynman integrals of this class, with any
integer indices n1, n2, are proportional to V1 (2.8) (Fig. 51), with coefficients being rational
functions of d. For example, for M(1, 1),

= −
1

2

d − 2

d − 3
. (6.12)

Two-loop [23, 24, 22] and three-loop [25, 26] massive on-shell diagrams can be calculated
using integration by parts.

6.3 On-shell renormalization of electron mass and field

The electron mass m in the on-shell renormalization scheme is defined as the position of
the pole of the electron propagator. On-shell external electron lines have p2 = m2; it is
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1-Loop: 
Dimensional-Recurrence from IBP-id’s 

order corrections to the hard-scattering amplitude for the proton-Compton scattering, one has to
evaluate one-loop N = 8 diagrams. The set of external momenta contains two subsets comprised of
three collinear momenta (representing the proton). The kinematics of the process is thus limited to
the 3-dimensional subspace. If this is the case, the best way of doing the tensor decomposition is
the one based on formula (8), regardless of the fact that for large N the number of terms obtained
can be very large.

As is well known, the direct evaluation of the general scalar integral (5) (i.e. (7)) represents a non-
trivial problem. However, with the help of the recursion relations, the problem can be significantly
simplified in the sense that the calculation of the original scalar integral can be reduced to the
calculation of a certain number of simpler fundamental (basic) intgerals.

4 Recursion relations for scalar integrals

Recursion relations for scalar integrals have been known for some time [3, 4, 5, 6, 7]. However,
as it turns out, the existing set of relations that can be found in the literature is not sufficient to
perform the reduction procedure completely, i.e. for all one-loop integrals appearing in practice.
The problem is related to vanishing of various kinematic determinants, it is manifest for the cases
corresponding to N > 6, and it is especially acute when evaluating one-loop Feynman integrals
appearing in the NLO analysis of large momentum transfer exclusive processes in PQCD. As is well
known, these processes are generally described in terms of Feynman diagrams containing a large
number of external massless lines. Thus, for example, for nucleon Compton scattering is N = 8.
A large number of external lines implies a large number of diagrams to be considered, as well as
a very large number of terms generated when performing the tensor decomposition using (8). In
view of the above, to treat the Feynman integrals (diagrams) with a large number of external lines
the use of computers is unavoidable. This requires that the scalar reduction procedure be generally
applicable. It is therefore absolutely clear that any ambiguity or uncertainty present in the scalar
recursion relations constitutes a serious problem. The method presented below makes it possible
to perform the reduction completely regardless of the kinematics of the process considered and the
complexity of the structure of the contributing diagrams.

For the reason of completeness and clearness of presentation and with the aim of comparison with
the already existing results, we now briefly present a few main steps of the derivation of recursion
relations. It should be pointed out that the derivation essentially represents a variation of the
derivation originally given in [5].

Recursion relations for scalar integrals are obtained with the help of the integration-by-parts
method [5, 13, 14]. Owing to translational invariance, the dimensionally regulated integrals satisfy
the following identity:

0 ≡
∫

dDl

(2π)D

∂

∂lµ

(

z0lµ +
∑N

i=1 zir
µ
i

Aν1

1 · · ·AνN

N

)

, (9)

where zi (i = 0 · · ·N) are arbitary constants, while Ai are the propagators given by (2). The identity
(9) is a variation of the identity used in [5], where it was assumed that rN = 0. Performing the
differentiation, expressing scalar products in the numerator in terms of propagators Ai, choosing
z0 =

∑N
i=1 zi, (which we assume in the following) and taking into account the scalar integral (5),

the identity (9) leads to the relation

N
∑

j=1

(

N
∑

i=1

[

(rj − ri)
2 + 2iε

]

zi

)

νjI
N
0 (D; {νk + δkj})

=
N
∑

i,j=1

ziνjI
N
0 (D; {νk + δkj − δki}) − (D −

N
∑

j=1

νj)z0I
N
0 (D; {νk}), (10)

5

Figure 1: One-loop N-point diagram

When evaluating Feynman diagrams, one ought to regularize all divergences. Making use of the
dimensional regularization method, one can simultaneously regularize UV and IR divergences, which
makes the dimensional regularization method optimal for the case of massless field theories.

The tensor integral (1) is, as it is seen, invariant under the permutations of the propagators Ai,
and is symmetric with respect to the Lorentz indices µi. Lorentz covariance allows the decomposition
of the tensor integral (1) in the form of a linear decomposition consisting of the momenta pi and the
metric tensor gµν .

3 Decomposition of tensor integrals

Various approaches have been proposed for reducing the dimensionally regulated N−point tensor
integrals to a linear combination of N− and lower−point scalar integrals multiplied by tensor struc-
tures made from the metric tensor gµν and external momenta. In this section we briefly review the
derivation of the tensor reduction formula originally obtained in Ref. [2].

For the purpose of the following discussion, let us consider the tensor integral

IN
µ1···µP

(D; {νi}) ≡ (µ2)2−D/2

∫

dDl

(2π)D

lµ1
· · · lµP

Aν1

1 Aν2

2 · · ·AνN

N

, (4)

and the corresponding scalar integral

IN
0 (D; {νi}) ≡ (µ2)2−D/2

∫

dDl

(2π)D

1

Aν1

1 Aν2

2 · · ·AνN

N

· (5)

The above integrals represent generalizations of the integrals (1) and (3), in that they contain
arbitrary powers νi ∈ N of the propagators in the integrand, where {νi} is the shorthand notation

3
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where δij is the Kronecker delta symbol. In arriving at (10), it has been understood that

IN
0 (D; ν1, · · · , νl−1, 0, νl+1, · · · , νN ) ≡ IN−1

0 (D; ν1, · · · , νl−1, νl+1, · · · , νN ). (11)

The relation (10) represents the starting point for the derivation of the recursion relations for scalar
integrals.

We have obtained the fundamental set of recursion relations by choosing the arbitrary constants
zi so as to satisfy the following system of linear equations:

∑N

i=1
(ri − rj)

2zi = C, j = 1, . . . , N, (12)

where C is an arbitrary constant. Introducing the notation rij = (ri − rj)2, the system (12) may be
written in matrix notation as











0 r12 · · · r1N

r12 0 · · · r2N
...

...
. . .

...
r1N r2N · · · 0





















z1

z2

...
zN











=











C
C
...
C











. (13)

It should be pointed out that the expression of the type (10) and the system of the type (13), for
the case of massive propagators (Ai = (l + ri)2 −m2

i + iε), see Ref. [5], can simply be obtained from
the relation given above by making a change rij → rij − m2

i − m2
j . Consequently, considerations

performed for the massive case [5, 6] apply to the massless case, and vice versa.
It should be mentioned that, in the existing literature, the constant C used to be chosen as a

real number different from zero. However, it is precisely this fact that, at the end, leads to the
breakdown of the existing scalar reduction methods. Namely, for some kinematics (e.g. collinear
on-shell external lines) the system (13) has no solution for C $= 0. However, if the possibility C = 0
is allowed, the system (13) will have a solution regardless of kinematics. This makes it possible
to obtain additional reduction relations and formulate methods applicable to arbitrary number of
external lines and to arbitrary kinematics.

If (12) is taken into account, and after using the relation [2]

−
∑N

j=1
νjI

N
0 (D; {νk + δkj}) = (4πµ2)−1IN

0 (D − 2; {νk}), (14)

which can be easily proved from the representation (7), the relation (10) reduces to

C IN
0 (D − 2; {νk}) =

N
∑

i=1

ziI
N
0 (D − 2; {νk − δki})

+(4πµ2)(D − 1 −
N
∑

j=1

νj)z0I
N
0 (D; {νk}), (15)

where zi are given by the solution of the system (12), and the infinitesimal part proportional to iε has
been omitted. This is a generalized form of the recursion relation which connects the scalar integrals
in a different number of dimensions [3, 4, 5, 6, 7]. The use of the relation (15) in practical calculations
depends on the form of the solution of the system of equations (12). For general considerations, it
is advantageous to write the system (12) in the following way:















0 1 1 · · · 1
1 0 r12 · · · r1N

1 r12 0 · · · r2N
...

...
...

. . .
...

1 r1N r2N · · · 0





























−C
z1

z2

...
zN















=















z0

0
0
...
0















. (16)
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D = 4 - 2e• PV decomposition

ID=4�2✏
n [q̄µq̄⌫ ] = A

2,0 ḡµ⌫ +
X

ij

A
2,ij pµi p

⌫
j (1.3)

Contracting by gµ⌫
[�2✏]:

I4�2✏
n [µ2

] = A
2,0(2✏) = (�✏)I6�2✏

n ) A
2,0 = �1

2

I6�2✏
n (1.4)

Contracting by vµ?,1v
⌫
?,2 with (v?,i · pj = 0):

I4�2✏
n [(v?,1 · q)(v?,2 · q)] = A

2,0(v?,1 · v?,2) (1.5)

) 1

(v?,1 · v?,2)
I4�2✏
n [(v?,1 · q)(v?,2 · q)] = �1

2

I6�2✏
n (1.6)

• From D ! D + 2: integrand generation of I6�2✏
n :

I4�2✏
n [µ2

] = (�✏)I6�2✏
n ,

1

(v?,1 · v?,2)
I4�2✏
n [(v?,1 · q)(v?,2 · q)] = �1

2

I6�2✏
n (1.7)

(tadpole) I4�2✏
1

[q2] = �2I6�2✏
1
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1-Loop: 
Dimensional-Recurrence from Integrand Reduction
A.2 The higher dimension integrals

The higher dimension integrals are defined in eq. (A.1) with D set to the appropriate value. The
relationship of these integrals to the usual four-dimensional ones has been extensively discussed
in ref. [23]. For n ≤ 6 they can be written in terms of the (4 − 2ε)-dimensional integrals via the
integral recursion relations

ID=6−2ε
n =

1

(n − 5 + 2ε)c0

[

2ID=4−2ε
n −

n
∑

i=1

ciI
(i),D=4−2ε
n−1

]

,

ID=8−2ε
n =

1

(n − 7 + 2ε)c0

[

2ID=6−2ε
n −

n
∑

i=1

ciI
(i),D=6−2ε
n−1

]

.

(A.12)

where ci is defined in eq. (A.10) (with the five-point kinematics replaced by n-point kinematics)
and c0 =

∑n
i=1 ci.

Higher dimension integrals arise naturally when performing the cut calculations described in
this paper. In a typical cut calculation discussed in the text we obtain integrals of the form

ID=4−2ε
n [f(pα, kα

i , µ2)] =

i(−1)n+1(4π)2−ε
∫

d4p

(2π)4
d−2εµ

(2π)−2ε

f(pα, kα
i , µ2)

(p2 − µ2 − m2) . . . ((p −
∑n−1

i=1 ki)2 − µ2 − m2)
,

(A.13)
where we have explicitly broken the (4− 2ε)-dimensional momentum into a four-dimensional part,
p, and a (−2ε)-dimensional part, µ.

Since we are using the Minkowski metric of negative signature and the fractional vector has
only space-like components, we define µ · µ = −µ2. Note that dimensional regularization can be
thought of as altering the mass appearing in the loop propagators. This mass is integrated over
when we perform the fractional dimensional vector integration:

∫

d−2εµ.

In general, odd powers of µα cancel from one-loop integrals. The µα integration, of eq. (A.13)
is formally in a sub-space that does not overlap with any other of the momenta associated with
the loop. For this reason any contribution to the numerator that is odd in the vector µα will
not contribute to the integral. Accordingly, we shall only need to consider the cases where the
integrand depends on µα only through µ2. Note that we do not need to consider the more general
cases of µαµβ etc., because in a full amplitude all of the (−2ε)-dimension Lorentz indices must be
contracted against each other.

Consider an integral of the form
∫

d4−2εP

(2π)4−2ε
(µ2)rf(pα, µ2) , (A.14)

where p and µ are the four- and (−2ε)-dimensional components of P . Breaking up the measure
into the two types of components we have
∫

d4p

(2π)4

∫

d−2εµ

(2π)−2ε
(µ2)rf(pα, µ2) =

∫

d4p

(2π)4

∫

dΩ−1−2ε

∫ ∞

0

dµ2

2(2π)−2ε
(µ2)−1−ε+rf(pα, µ2)

=
(2π)2r ∫

dΩ−1−2ε
∫

dΩ2r−1−2ε

∫

d4p

(2π)4

∫

d2r−2εµ

(2π)2r−2ε
f(pα, µ2)

= −ε(1 − ε)(2 − ε) · · · (r − 1 − ε) (4π)r
∫

d4+2r−2εP

(2π)4+2r−2ε
f(pα, µ2) ,

(A.15)
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2. Dimensional-Recurrence from Integrand Reduction

Proposition.

@ 1-Loop: Dimensional-Recurrence for IDn

• n = 5: generated from the relation between µ

2 and Di’s

• 1  n  4: generated from the relation between µ

2 and
(v?,1·q)(v?,2·q)

(v?,1·v?,2)
and Di’s

• when n = 1 (tadpole): also generated from the relation between µ

2 and q

2 and Di’s

Proposition.

@ 1-Loop: Dimensional-Recurrence for IDn

• generated from the relation between µ

2 and
(v?,1·q)(v?,2·q)

(v?,1·v?,2)
and Di’s

3. Pentagons

I01234[µ2] = �✏ I6�2✏
01234 = c

01234
0 I01234 + (3.1)

4. Bubbles

1

6
(�3 + 2✏)I6�2✏

01 = c0 I01 +
X

i

ci Ii (4.1)

5. Tadpoles

or simply from

I0[q2] = I0[µ2] +m

2
0 I0 (5.1)

6. IBP-id’s from Dimensional Recurrence

I

D=6�2✏
n =

1

(n� 5 + 2✏)

h
cn,0 I

D=4�2✏
n �

nX

i=1

cn,i I
(i),D=4�2✏
n�1

i
(6.1)

I

D=6�2✏
n�1 =

1

(n� 6 + 2✏)

h
cn�1,0 I

D=4�2✏
n�1 �

n�1X

i=1

cn�1,i I
(i),D=4�2✏
n�2

i
(6.2)

. . . = . . . (6.3)

I

D=6�2✏
2 =

1

(�3 + 2✏)

h
c2,0 I

D=4�2✏
2 �

2X

i=1

c2,i I
(i),D=4�2✏
1

i
(6.4)

I

D=6�2✏
1 =

1

(�4 + 2✏)
c1,0 I

D=4�2✏
1 (6.5)

• Telescopic Identity

Bottom-up substitutions, to build an identity in D = 6� 2✏

– 3 –
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We present the integrand reduction via multivariate polynomial division as a natural technique
to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the
integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of
loops and external legs, which can be used to obtain the decomposition of any integrand analytically
with a finite number of algebraic operations. The general results are illustrated by applications to
two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can
also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

Introduction – In the perturbative approach to quan-
tum field theories, the elements of the scattering matrix,
which are the scattering amplitudes, can be expressed in
terms of Feynman diagrams. The latter generally rep-
resent multiple integrals whose integrand is a rational
function of the integration variables. Scattering ampli-
tudes are analytic functions of the kinematic variables of
the interacting particles, hence they are determined by
their singularities, whose location in the complex plane
is specified by a set of algebraic equations. The analysis
of the singularity structure can be used to define the dis-
continuities of a Feynman integral across the branch cuts
attached to the Landau singularities. They are encoded
in the Cutkosky formula and correspond to the unitarity
conditions of the scattering amplitude. In the canonical
formalism, the unitarity cut conditions have been used
for the evaluation of the scattering amplitudes trough
dispersive Cauchy’s integral representations. However,
the dispersive approach is well known to su↵er from am-
biguities which limit its applicability for the quantitative
evaluation of generic Feynman integrals in gauge theo-
ries.

In the more modern interpretation of unitarity, cut
conditions and analyticity are successfully exploited for
decomposing scattering amplitudes in terms of indepen-
dent functions – rather than for their direct evaluation.
The basic functions entering the amplitudes decomposi-
tion are univocally characterised by their singularities.
The singularity structure can be accessed before inte-
gration, at the integrand level [1, 2]. Therefore, the
decomposition of the integrated amplitudes can be de-
duced from the the decomposition of the corresponding
integrands. The integrand-reduction methods [1–7] rely
on the existence of a relation between the numerator and
the denominators of each Feynman integral. A generic
numerator can be expressed as a combination of (prod-
ucts of) denominators, multiplied by polynomial coe�-
cients, which correspond to the residues at the multiple
cuts of the diagrams. The multiple-cut conditions, gen-
erally fulfilled for complex values of the integration vari-

Figure 1. Integrand recurrence relation for a generic `-loop
integrand.

ables, can be viewed as projectors isolating each residue.
The latter, depicted as an on-shell cut diagram, repre-
sents the amplitude factorized into a product of simpler
amplitudes, either with fewer loops or a lower number of
legs.
The residues are multivariate polynomials in those

components of the propagating momenta which corre-
spond to irreducible scalar products (ISPs), that cannot
be decomposed in terms of denominators. The ISPs ei-
ther yield spurious contributions, which vanish upon in-
tegration, or generate the basic integrals entering the am-
plitude decomposition [2, 4].
Within the integrand reduction methods, the problem

of decomposing any scattering amplitude in terms of in-
dependent integrals is therefore reduced to the algebraic
problem of reconstructing the residues at its multiple
cuts.
In Refs. [6, 7] the determination of the residues at the

multiple cuts has been formulated as a problem of mul-
tivariate polynomial division, and solved using algebraic
geometry techniques. These techniques allowed one to
prove that the integrand decomposition, originally formu-
lated for one-loop amplitudes [1], is valid and applicable
at any order in perturbation theory, irrespective of the
complexity of the topology of the involved diagrams, be-
ing them massless or massive, planar or non planar. This
novel reduction algorithm has been applied to the decom-
position of supersymmetric amplitudes at two and three
loops [8, 9]. Also, it has been used for the identification
of the two-loop integrand basis in four dimensions [10],
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+ bN
i1···i1 ··· in···incJi1i2···in

. (5)

The normal form of the numerator is not in the ideal J ,
thus it cannot be expressed in terms of the denominators
and it is identified with the residue of the multiple cut
D

a1
i1

= · · · = D

an
in

= 0,

bN
i1···i1 ··· in···incJi1i2···in

= �
i1···i1 ··· in···in , (6)

belonging to the quotient ring P [z]/J . The term �, in-
stead, belongs to the ideal J , thus it can be written as

�
i1···i1 ··· in···in =

nX

k=1

Ni1 · · · i1
| {z }

a1

... ik · · · ik
| {z }
ak�1

... in · · · in
| {z }

an

D

ik . (7)

Substituting Eqs. (5), (6), and (7) in Eq. (1), we obtain

Ii1 · · · i1
| {z }

a1

... in · · · in
| {z }

an

=
nX

k=1

Ii1 · · · i1
| {z }

a1

... ik · · · ik
| {z }
ak�1

... in · · · in
| {z }

an

+

+
�

i1···i1 ··· in···in
D

a1
i1

· · ·Dak
in

, (8)

which is a non-homogeneous recurrence relation express-
ing a given integrand in terms of integrands with fewer
denominators. it is the generalization of the recurrence
relation of Ref. [7], valid for arbitrary powers of the de-
nominators. Its pictorial representation is shown in Fig-
ure 1. Within the divide-and-conquer approach, the inte-
grand reduction formula becomes an elegant and power-
ful tool to perform the analytic decomposition of multi-
loop integrals through a top-down procedure starting
from the integrand with the highest number of denomi-
nators. It is worth noticing that, in this algorithm, the
presence of multiple denominators is reflected by the fact
that the division modulo the ideal J

i1···in enters the pro-
cedure a1 ⇥ · · ·⇥ a

n

times.

In the following we apply the divide-and-conquer ap-
proach to some two- and three-point two-loop diagrams
appearing in QED and QCD radiative corrections. The
divergences have been regularized within the ’t Hooft–
Veltman scheme and the computation has been carried
out in the Feynman gauge. The decompositions have
been verified by using the N = N global test [1, 13, 14].

Photon vacuum polarization – As a first example we
consider the two-loop contributions to the transverse part
⇧(k2) of the vacuum polarization in QED with a massive
fermion [15]. The integrand of ⇧(k2) gets contributions
from the three self-energy diagrams in the first row of
Figure 2. The d-dimensional loop momenta q̄

i

are split
into a 4-dimensional and (�2 ✏)-dimensional part, q̄

i

=
q

i

+ ~µ

i

, with q

i

· ~µ
j

= 0 and ~µ

i

· ~µ
j

⌘ µ

2
ij

. In this case the
variables z are µ

2
11, µ

2
22, µ

2
12 and the components of q

i

in
the basis {k, k?, e3, e4}, such that

k

2
? 6= 0 6= e3 · e4 , k · k? = k · e

j

= k? · e
j

= e

2
j

= 0 .

Figure 2. First row: diagrams leading to the two-loop QED
corrections to the photon self energy. Second row: two-loop
diagrams entering the QCD corrections to gg ! H in the
heavy top mass approximation.

The integrand of the diagram (a) is

I(a)
12345 =

1

3� 2 ✏

N (a)
12345

D1D2D3D4D5
, (9)

while its denominators are

D1 = q̄

2
1 �m

2
, D2 = (q̄1 + k)2 �m

2
,

D3 = q̄

2
2 �m

2
, D4 = (q̄2 + k)2 �m

2
,

D5 = (q̄1 � q̄2)
2
.

According to our algorithm, the first step of the reduction

requires the division N (a)
12345/G12345, whose result reads as

N (a)
12345 =�12345 +N1235D4 +N2345D1 +N1345D2

+N1245D3 +N1234D5 . (10)

In the second step, the numerators N
i1i2i3i4 are reduced

performing the division N
i1i2i3i4/Gi1i2i3i4 ,

N (a)
12345 =�12345 +�1235D4 +�2345D1 +�1345D2

+�1245D3 +�1234D5 +N123D4D5

+N124D3D5 +N134D2D5 +N234D1D5

+N125D3D4 +N135D2D4 +N245D1D3

+N345D1D2 +N145D2D3 +N235D1D4 . (11)

The complete decomposition of N (a)
12345 is obtained by it-

erating the procedure twice,

N (a)
12345 =�12345 +�1235D4 +�2345D1 +�1345D2

+�1245D3 +�1234D5 +�123D4D5
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+�345D1D2 +�145D2D3 +�235D1D4

+�13D2D4D5 +�24D1D3D5

+�14D2D3D5 +�23D1D4D5 . (12)

The residues in Eq. (12) read as follows:

�12345 = 8
�
4m4 � k

4 + k

2 (k2 � 2m2) ✏
�
,

3

+ bN
i1···i1 ··· in···incJi1i2···in

. (5)
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thus it cannot be expressed in terms of the denominators
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which is a non-homogeneous recurrence relation express-
ing a given integrand in terms of integrands with fewer
denominators. it is the generalization of the recurrence
relation of Ref. [7], valid for arbitrary powers of the de-
nominators. Its pictorial representation is shown in Fig-
ure 1. Within the divide-and-conquer approach, the inte-
grand reduction formula becomes an elegant and power-
ful tool to perform the analytic decomposition of multi-
loop integrals through a top-down procedure starting
from the integrand with the highest number of denomi-
nators. It is worth noticing that, in this algorithm, the
presence of multiple denominators is reflected by the fact
that the division modulo the ideal J

i1···in enters the pro-
cedure a1 ⇥ · · ·⇥ a
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times.

In the following we apply the divide-and-conquer ap-
proach to some two- and three-point two-loop diagrams
appearing in QED and QCD radiative corrections. The
divergences have been regularized within the ’t Hooft–
Veltman scheme and the computation has been carried
out in the Feynman gauge. The decompositions have
been verified by using the N = N global test [1, 13, 14].

Photon vacuum polarization – As a first example we
consider the two-loop contributions to the transverse part
⇧(k2) of the vacuum polarization in QED with a massive
fermion [15]. The integrand of ⇧(k2) gets contributions
from the three self-energy diagrams in the first row of
Figure 2. The d-dimensional loop momenta q̄
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are split
into a 4-dimensional and (�2 ✏)-dimensional part, q̄
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Figure 2. First row: diagrams leading to the two-loop QED
corrections to the photon self energy. Second row: two-loop
diagrams entering the QCD corrections to gg ! H in the
heavy top mass approximation.

The integrand of the diagram (a) is

I(a)
12345 =

1

3� 2 ✏

N (a)
12345

D1D2D3D4D5
, (9)

while its denominators are

D1 = q̄

2
1 �m

2
, D2 = (q̄1 + k)2 �m

2
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D3 = q̄

2
2 �m

2
, D4 = (q̄2 + k)2 �m

2
,

D5 = (q̄1 � q̄2)
2
.

According to our algorithm, the first step of the reduction

requires the division N (a)
12345/G12345, whose result reads as

N (a)
12345 =�12345 +N1235D4 +N2345D1 +N1345D2

+N1245D3 +N1234D5 . (10)

In the second step, the numerators N
i1i2i3i4 are reduced

performing the division N
i1i2i3i4/Gi1i2i3i4 ,

N (a)
12345 =�12345 +�1235D4 +�2345D1 +�1345D2

+�1245D3 +�1234D5 +N123D4D5

+N124D3D5 +N134D2D5 +N234D1D5

+N125D3D4 +N135D2D4 +N245D1D3

+N345D1D2 +N145D2D3 +N235D1D4 . (11)

The complete decomposition of N (a)
12345 is obtained by it-

erating the procedure twice,

N (a)
12345 =�12345 +�1235D4 +�2345D1 +�1345D2

+�1245D3 +�1234D5 +�123D4D5

+�124D3D5 +�134D2D5 +�234D1D5

+�125D3D4 +�135D2D4 +�245D1D3

+�345D1D2 +�145D2D3 +�235D1D4

+�13D2D4D5 +�24D1D3D5

+�14D2D3D5 +�23D1D4D5 . (12)

The residues in Eq. (12) read as follows:

�12345 = 8
�
4m4 � k

4 + k

2 (k2 � 2m2) ✏
�
,

just apply the polynomial division 
to the integrand you want to reduce:

analytic/algebraic reduction



Pentagons

Notes

1 General strategy for recurrence relations

We use
In[µ2] = �✏Id=6�2✏

n (1)

For n  4 we also use Eq. (I.14) of Bern and Chalmers,

A2;0 = �1

2
Id=6�2✏
n . (2)

where A2;0 is the form factor in the tensor decomposition

In[q̄µq̄⌫ ] = A2;0 g
µ⌫ +

X

ij

A2;ij p
µ
i p

⌫
j . (3)

The strategy is:

• for n = 5, µ2 is not part of the integrand decomposition, therefore we use the integrand
decomposition of µ2 together with Eq. (1);

• for n  4 we contract Eq. (3) with two vectors vµ?,1 and vµ?,2 such that v?,i · pj = 0, and
we use

1

v?,1 · v?,2
In[(q̄ · v?,1)(q̄ · v?,2)] = A2;0 = �1

2
Id=6�2✏
n , (4)

combined with the integrand decomposition of the l.h.s. (more in detail, for n = 4 we
use v?,1 = v?,2 = v?, and for n  3 we use v?,1 = e3, v?,2 = e4).

2 Pentagons

We start with the 5-point one-loop integrand

I01234 =
µ2

D0D1D2D3D4
, (5)

1

Notes

1 General strategy for recurrence relations
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n (1)

For n  4 we also use Eq. (I.14) of Bern and Chalmers,

A2;0 = �1

2
Id=6�2✏
n . (2)

where A2;0 is the form factor in the tensor decomposition

In[q̄µq̄⌫ ] = A2;0 g
µ⌫ +

X

ij

A2;ij p
µ
i p

⌫
j . (3)

The strategy is:

• for n = 5, µ2 is not part of the integrand decomposition, therefore we use the integrand
decomposition of µ2 together with Eq. (1);

• for n  4 we contract Eq. (3) with two vectors vµ?,1 and vµ?,2 such that v?,i · pj = 0, and
we use

1

v?,1 · v?,2
In[(q̄ · v?,1)(q̄ · v?,2)] = A2;0 = �1

2
Id=6�2✏
n , (4)

combined with the integrand decomposition of the l.h.s. (more in detail, for n = 4 we
use v?,1 = v?,2 = v?, and for n  3 we use v?,1 = e3, v?,2 = e4).

2 Pentagons

We start with the 5-point one-loop integrand

I01234 =
µ2

D0D1D2D3D4
, (5)

1

whose decomposition reads

µ2 = c(01234)0

+
⇣
c(0123)0 + c(0123)1 (q · v(0123)? )

⌘
D4

+
⇣
c(0124)0 + c(0124)1 (q · v(0124)? )

⌘
D3

+
⇣
c(0134)0 + c(0134)1 (q · v(0134)? )

⌘
D2

+
⇣
c(0234)0 + c(0234)1 (q · v(0234)? )

⌘
D1

+
⇣
c(1234)0 + c(1234)1 ((q + p1) · v(1234)? )

⌘
D0 (6)

which integrated with Eq. (1) gives

0 = I01234[µ2] = �✏ I01234 = c(01234)0 I12345
+ c(0123)0 I0123 + c(0124)0 I0124 + c(0134)0 I0134
+ c(0234)0 I0234 + c(1234)0 I1234. (7)

3 Boxes

We start with the 4-point one-loop integrand

I0123 =
1

v2?

(q · v?)2

D0D1D2D3
, (8)

whose decomposition reads

(q · v?)2

v2?
= c(0123)0 + µ2

+
⇣
c(0123)0 + c(012)1 (q · e(012)3 ) + c(012)4 (q · e(012)4 )

⌘
D3

+
⇣
c(013)0 + c(013)1 (q · e(013)3 ) + c(013)4 (q · e(013)4 )

⌘
D2

+
⇣
c(023)0 + c(023)1 (q · e(023)3 ) + c(023)4 (q · e(023)4 )

⌘
D1

+
⇣
c(123)0 + c(123)1 (q · e(123)3 ) + c(123)4 (q · e(123)4 )

⌘
D0. (9)

Integrating and using Eq. (3) we get

1

v2?
In[(q.v?)2]� I[µ2] =

1

2
(�1 + 2✏) I6�2✏

0123 = c(0123)0 I0123 +
X

ijk

c(ijk)0 Iijk. (10)

4 Triangles
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(q · e3)(q · e4)
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Integrating and using Eq. (3) we get
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2. Dimensional-Recurrence from Integrand Reduction

Proposition.

@ 1-Loop: Dimensional-Recurrence for IDn

• n = 5: generated from the relation between µ2
and Di’s

• 1  n  4: generated from the relation between µ2
and

(v?,1·q)(v?,2·q)
(v?,1·v?,2)

and Di’s

• when n = 1 (tadpole): also generated from the relation between µ2
and q2 and Di’s

3. Pentagons

I01234[µ2
] = �✏ I6�2✏

01234 = c012340 I01234 + (3.1)

– 2 –
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⇣
c(0124)0 + c(0124)1 (q · v(0124)? )

⌘
D3

+
⇣
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⇣
c(0234)0 + c(0234)1 (q · v(0234)? )

⌘
D1
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⇣
c(1234)0 + c(1234)1 ((q + p1) · v(1234)? )

⌘
D0 (6)

which integrated with Eq. (1) gives
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+ c(0123)0 I0123 + c(0124)0 I0124 + c(0134)0 I0134
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Integration
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+
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⌘
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1
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X

ijk

c(ijk)0 Iijk. (10)
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Integrand decomposition

Integration



Triangles

whose decomposition reads

µ2 = c(01234)0

+
⇣
c(0123)0 + c(0123)1 (q · v(0123)? )

⌘
D4

+
⇣
c(0124)0 + c(0124)1 (q · v(0124)? )

⌘
D3

+
⇣
c(0134)0 + c(0134)1 (q · v(0134)? )

⌘
D2

+
⇣
c(0234)0 + c(0234)1 (q · v(0234)? )

⌘
D1

+
⇣
c(1234)0 + c(1234)1 ((q + p1) · v(1234)? )

⌘
D0 (6)

which integrated with Eq. (1) gives

0 = I01234[µ2] = �✏ I01234 = c(01234)0 I12345
+ c(0123)0 I0123 + c(0124)0 I0124 + c(0134)0 I0134
+ c(0234)0 I0234 + c(1234)0 I1234. (7)

3 Boxes

We start with the 4-point one-loop integrand

I0123 =
1

v2?

(q · v?)2

D0D1D2D3
, (8)

whose decomposition reads

(q · v?)2

v2?
= c(0123)0 + µ2

+
⇣
c(0123)0 + c(012)1 (q · e(012)3 ) + c(012)4 (q · e(012)4 )

⌘
D3

+
⇣
c(013)0 + c(013)1 (q · e(013)3 ) + c(013)4 (q · e(013)4 )

⌘
D2

+
⇣
c(023)0 + c(023)1 (q · e(023)3 ) + c(023)4 (q · e(023)4 )

⌘
D1

+
⇣
c(123)0 + c(123)1 (q · e(123)3 ) + c(123)4 (q · e(123)4 )

⌘
D0. (9)

Integrating and using Eq. (3) we get

1

v2?
In[(q.v?)2]� I[µ2] =

1

2
(�1 + 2✏) I6�2✏

0123 = c(0123)0 I0123 +
X

ijk

c(ijk)0 Iijk. (10)

4 Triangles

We start with the 3-point one-loop integrand

I012 =
1

(e3 · e4)
(q · e3)(q · e4)
D0D1D2

, (11)

2
and after reduction we get

(q · e3)(q · e4)
(e3 · e4)

= c(0123)0 +
1

2
µ2 + scalar bubbles + linear bubbles + tadpoles. (12)

After rewriting the linear bubbles as functions of the scalar bubbles and tadpoles, the contri-
butions from the tadpoles vanish, so that we have

(q · e3)(q · e4)
(e3 · e4)

= c(0123)0 +
1

2
µ2 + scalar bubbles. (13)

Integrating with Eq. (4) and Eq. (1) we get

1

4
(�2 + 2 ✏) Id=6�2✏

0123 = c(0123)0 I0123 +
X

ij

cijIij . (14)

5 Bubbles

Same thing as the triangles with

I01 =
1

(e3 · e4)
(q · e3)(q · e4)

D0D1
, (15)

which gets

(q · e3)(q · e4)
(e3 · e4)

=
1

2
µ2 + scalar, linear and quadratic bubble + tadpoles. (16)

By expressing linear and quadratic bubbles as a sum of scalar bubbles and tadpoles (plus
another contribution proportional to µ2 and coming from the reduction of the quadratic
bubble) we get

(q · e3)(q · e4)
(e3 · e4)

=
1

3
µ2 + scalar bubble + tadpoles. (17)

Using again Eq. (4) and Eq. (1) we get

1

6
(�3 + 2 ✏) Id=6�2 ✏

01 = scalar bubble + tadpoles. (18)

6 Tadpoles

Tadpoles come almost for free from our paper on the Laurent expansion and the higher-rank,
where we (forgot and then) computed the irreducible integral I0[(q · e3)(q · e4)]

1

e3 · e4
I0[(q · e3)(q · e4)] =

1

4
I[µ2] +

1

4
m2

0 I0 (19)

and therefore
1

8
(�4 + 2 ✏) Id=6�2✏

0 =
1

4
m2

0 I0. (20)

3

and after reduction we get

(q · e3)(q · e4)
(e3 · e4)

= c(0123)0 +
1

2
µ2 + scalar bubbles + linear bubbles + tadpoles. (12)

After rewriting the linear bubbles as functions of the scalar bubbles and tadpoles, the contri-
butions from the tadpoles vanish, so that we have

(q · e3)(q · e4)
(e3 · e4)

= c(0123)0 +
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2
µ2 + scalar bubbles. (13)

Integrating with Eq. (4) and Eq. (1) we get
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4
(�2 + 2 ✏) Id=6�2✏

0123 = c(0123)0 I0123 +
X

ij

cijIij . (14)

5 Bubbles
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D0D1
, (15)
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=
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another contribution proportional to µ2 and coming from the reduction of the quadratic
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=
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3
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Using again Eq. (4) and Eq. (1) we get

1

6
(�3 + 2 ✏) Id=6�2 ✏
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6 Tadpoles
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3
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= c(0123)0 +
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2
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Using again Eq. (4) and Eq. (1) we get
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(�3 + 2 ✏) Id=6�2 ✏
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6 Tadpoles
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Integrand decomposition

Integration



Bubbles

and after reduction we get

(q · e3)(q · e4)
(e3 · e4)

= c(0123)0 +
1

2
µ2 + scalar bubbles + linear bubbles + tadpoles. (12)

After rewriting the linear bubbles as functions of the scalar bubbles and tadpoles, the contri-
butions from the tadpoles vanish, so that we have

(q · e3)(q · e4)
(e3 · e4)

= c(0123)0 +
1

2
µ2 + scalar bubbles. (13)

Integrating with Eq. (4) and Eq. (1) we get

1

4
(�2 + 2 ✏) Id=6�2✏

0123 = c(0123)0 I0123 +
X

ij

cijIij . (14)

5 Bubbles

Same thing as the triangles with

I01 =
1

(e3 · e4)
(q · e3)(q · e4)

D0D1
, (15)

which gets

(q · e3)(q · e4)
(e3 · e4)

=
1

2
µ2 + scalar, linear and quadratic bubble + tadpoles. (16)

By expressing linear and quadratic bubbles as a sum of scalar bubbles and tadpoles (plus
another contribution proportional to µ2 and coming from the reduction of the quadratic
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3
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6
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3

and after reduction we get

(q · e3)(q · e4)
(e3 · e4)

= c(0123)0 +
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= c(0123)0 +
1

2
µ2 + scalar bubbles. (13)
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, (15)

which gets

(q · e3)(q · e4)
(e3 · e4)

=
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2
µ2 + scalar, linear and quadratic bubble + tadpoles. (16)

By expressing linear and quadratic bubbles as a sum of scalar bubbles and tadpoles (plus
another contribution proportional to µ2 and coming from the reduction of the quadratic
bubble) we get

(q · e3)(q · e4)
(e3 · e4)

=
1

3
µ2 + scalar bubble + tadpoles. (17)

Using again Eq. (4) and Eq. (1) we get
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6
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01 = scalar bubble + tadpoles. (18)

6 Tadpoles

Tadpoles come almost for free from our paper on the Laurent expansion and the higher-rank,
where we (forgot and then) computed the irreducible integral I0[(q · e3)(q · e4)]
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and therefore
1

8
(�4 + 2 ✏) Id=6�2✏

0 =
1

4
m2

0 I0. (20)

3

2. Dimensional-Recurrence from Integrand Reduction

Proposition.

@ 1-Loop: Dimensional-Recurrence for IDn

• n = 5: generated from the relation between µ2
and Di’s

• 1  n  4: generated from the relation between µ2
and

(v?,1·q)(v?,2·q)
(v?,1·v?,2)

and Di’s
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Bottom-up substitutions, to build an identity in D = 6� 2✏
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gies).

– 4 –

(n� 5 + 2✏)ID=6�2✏
n =

h
cn,0I

D=4�2✏
n �

nX

i=1

c0n,i I
(i),D=6�2✏
n�1 �

n�1X

i=1

c0n�1,i I
(i)D=6�2✏
n�2

� . . .�
n�1X

i=1

c0n�1,i I
(i),D=6�2✏
1

i

(n� 1 +D)ID+2
n =

h
cn,0I

D
n �

nX

i=1

c0n,i I
(i),D+2
n�1 �

n�1X

i=1

c0n�1,i I
(i)D+2
n�2 � . . .�

n�1X

i=1

c0n�1,i I
(i),D+2
1

i

Sending D ! D � 2

(n� 3 +D)IDn =

h
cn,0I

D�2
n �

nX

i=1

c0n,i I
(i),D
n�1 �

n�1X

i=1

c0n�1,i I
(i)D
n�2 � . . .�

n�1X

i=1

c0n�1,i I
(i),D
1

i

i↵ cn,0 = 0

(n� 3 +D)IDn =

h
�

nX

i=1

c0n,i I
(i),D
n�1 �

n�1X

i=1

c0n�1,i I
(i)D
n�2 � . . .�

n�1X

i=1

c0n�1,i I
(i),D
1

i

this is an IBP-id: IDn is reducible in terms of lower-point MI’s (subtopologies).

– 4 –

(n� 5 + 2✏)ID=6�2✏
n =

h
cn,0I

D=4�2✏
n �

nX

i=1

c0n,i I
(i),D=6�2✏
n�1 �

n�1X

i=1

c0n�1,i I
(i)D=6�2✏
n�2

� . . .�
n�1X

i=1

c0n�1,i I
(i),D=6�2✏
1

i

(n� 1 +D)ID+2
n =

h
cn,0I

D
n �

nX

i=1

c0n,i I
(i),D+2
n�1 �

n�1X

i=1

c0n�1,i I
(i)D+2
n�2 � . . .�

n�1X

i=1

c0n�1,i I
(i),D+2
1

i

Sending D ! D � 2

(n� 3 +D)IDn =

h
cn,0I

D�2
n �

nX

i=1

c0n,i I
(i),D
n�1 �

n�1X

i=1

c0n�1,i I
(i)D
n�2 � . . .�

n�1X

i=1

c0n�1,i I
(i),D
1

i

i↵ cn,0 = 0

(n� 3 +D)IDn =

h
�

nX

i=1

c0n,i I
(i),D
n�1 �

n�1X

i=1

c0n�1,i I
(i)D
n�2 � . . .�

n�1X

i=1

c0n�1,i I
(i),D
1

i

this is an IBP-id: IDn is reducible in terms of lower-point MI’s (subtopologies).

– 4 –

(n� 5 + 2✏)ID=6�2✏
n =

h
cn,0I

D=4�2✏
n �

nX

i=1

c0n,i I
(i),D=6�2✏
n�1 �

n�1X

i=1

c0n�1,i I
(i)D=6�2✏
n�2

� . . .�
n�1X

i=1

c0n�1,i I
(i),D=6�2✏
1

i

(n� 1 +D)ID+2
n =

h
cn,0I

D
n �

nX

i=1

c0n,i I
(i),D+2
n�1 �

n�1X

i=1

c0n�1,i I
(i)D+2
n�2 � . . .�

n�1X

i=1

c0n�1,i I
(i),D+2
1

i

Sending D ! D � 2

(n� 3 +D)IDn =

h
cn,0I

D�2
n �

nX

i=1

c0n,i I
(i),D
n�1 �

n�1X

i=1

c0n�1,i I
(i)D
n�2 � . . .�

n�1X

i=1

c0n�1,i I
(i),D
1

i

i↵ cn,0 = 0

(n� 3 +D)IDn =

h
�

nX

i=1

c0n,i I
(i),D
n�1 �

n�1X

i=1

c0n�1,i I
(i)D
n�2 � . . .�

n�1X

i=1

c0n�1,i I
(i),D
1

i

this is an IBP-id: IDn is reducible in terms of lower-point MI’s (subtopologies).

Proposition.
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) the integrand reduction can detect algebraically if In is MI or not.
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Finally, we arrive at

M(n1, n2) =
Γ(−d/2 + n1 + n2)Γ(d − n1 − 2n2)

Γ(n1)Γ(d − n1 − n2)
. (6.11)

The denominator in (6.9) behaves as (k2)n1+n2 at k → ∞. Therefore, the integral
diverges if d ≥ 2(n1 + n2). At d → 4 this means n1 + n2 ≤ 2. This ultraviolet divergence
shows itself as a 1/ε pole of the first Γ function in the numerator of (6.11) (this Γ function
depends on n1 + n2, i.e., on the behaviour of the integrand at k → ∞). The integral (6.9)
can also have infrared divergences. Its denominator behaves as kn1+2n2 at k → 0, and the
integral diverges in this region if d ≤ n1 + 2n2. At d → 4 this means n1 + 2n2 ≥ 4. This
infrared divergence shows itself as a 1/ε pole of the second Γ function in the numerator
of (6.11) (this Γ function depends on n1 + 2n2, i.e., on the behaviour of the integrand at
k → 0).

Figure 50: One-loop on-shell propagator diagram

Figure 51: The basis integral

Let’s summarize. There is one generic topology of one-loop massive on-shell propagator
diagrams in QED and QCD (Fig. 50). All Feynman integrals of this class, with any
integer indices n1, n2, are proportional to V1 (2.8) (Fig. 51), with coefficients being rational
functions of d. For example, for M(1, 1),

= −
1

2

d − 2

d − 3
. (6.12)

Two-loop [23, 24, 22] and three-loop [25, 26] massive on-shell diagrams can be calculated
using integration by parts.

6.3 On-shell renormalization of electron mass and field

The electron mass m in the on-shell renormalization scheme is defined as the position of
the pole of the electron propagator. On-shell external electron lines have p2 = m2; it is
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7 IBP via recurrence relations

7.1 Example: QED bubble

We consider a bubble I01 with the denominators

D0 = q2, D1 = q2 + 2(q · p), (i.e. m2
0 = p2 �m2

1 = 0). (21)

An explicit calculation shows that the recurrence relation in Eq. (18) (using d = 4 � 2✏)
becomes

(1� d) I(d+2)
01 = Id

1 . (22)

By substituting the r.h.s. with Eq. (20) one gets

(1� d) I(d+2)
01 = � 1

2m2
1

d I(d+2)
1 , (23)

which, with the shift d ! d� 2 becomes

(3� d) Id
01 =

1

2m2
1

(2� d) Id
1 . (24)

This relation is exactly the same one gets by combining the IBPs of I01[qµ] and I1[qµ].
Tiziano’s NOTE: I recomputed it with both the recurrence and the IBPs, and now I got
agreement with the right pre-factors.

7.2 Example 2 (QED vertex)

We consider a triangle I012 with kinematics corresponding to the QED vertex

D0 = q̄2, D1 = (q̄ + k1)
2 �m2

e, D1 = (q̄ � k2)
2 �m2

e,

with m2
0 = 0, k21 = k22 = m2

1 = m2
2 = m2

e, (k1 + k2)
2 = s. (25)

The relevant recurrence relations are

(2� d) I(d+2)
012 = I(d)

12 (26)

(1� d) I(d+2)
12 =

4m2
e � s

2
I(d)
12 + I(d)

1 (27)

�d I(d+2)
1 = 2m2

e I(d)
1 (28)

We use Eq. (27) and solve for I(d)
12 . We plug the solution in (26) and substitute the tadpole

I(d)
1 with the one in higher dimensions I(d+2)

1 using Eq. (28). Putting everything together we
get an equation which is homogeneous in the number of dimensions, having only integrals in
d+ 2,

(2� d) I(d+2)
012 =

2

4m2
e � s

⇣
(1� d) I(d+2)

12 +
d

2m2
e
I(d+2)
1

⌘
,

which after the shifty d ! d� 2 becomes

(4� d) I(d)
012 =

2

4m2
e � s

⇣
(3� d) I(d)

12 +
d� 2

2m2
e
I(d)
1

⌘
. (29)

Tiziano’s NOTE: checked numerically with AvHOLO for generic me, and with Uli’s IBP
for me = 1.

4

Bubble rec. rel.

Tadpole rec. rel.

Telescopic Identity
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is defined in such a way that its propagator Sos(p) behaves as S0(p) (6.14) near the mass
shell:

Zos
ψ =

[

1 − Σ2(m
2) − 2m2Σ′

1(m
2)

]−1
. (6.24)

In order to calculate Zos
m and Zos

ψ , it is convenient to introduce the function

T (t) =
1

4m
Tr(/v + 1)Σ(mv(1 + t)) = Σ1(m

2) +
[

Σ2(m
2) + 2m2Σ′

1(m
2)

]

t + · · · (6.25)

so that
Zos

m = 1 − T (0) , Zos
ψ = [1 − T ′(0)]−1 . (6.26)

k + pp p

k

Figure 52: One-loop electron self-energy

Let’s calculate it at one loop (Fig. 52). We put m = 1; the power of m will be restored
by dimensionality:

T (t) = −ie2
0

∫

ddk

(2π)d

1

D1(t) D2

1

4
Tr(/v + 1)γµ(/k + /p + 1)γν

(

gµν + ξ
kµkν
D2

)

, (6.27)

where
p = v(1 + t) , D1(t) = 1 − (k + p)2 , D2 = −k2 .

In calculating the numerator, we can express

p · k =
1

2

[

D2 − D1(t) + 1 − (1 + t)2
]

and omit terms with D1(t), because the resulting integrals contain no scale. We obtain

T (t) = −ie2
0

∫

ddk

(2π)d

1

D1(t)

[

2

D2
−

d − 2

2
(1 − t) + O(t2)

]

.

This result is gauge-independent.
Expanding

D1(t) = D1 + (D1 − D2 − 2)t + O(t2) , D1 = 1 − (k + v)2 ,

we obtain

T (t) = −ie2
0

∫

ddk

(2π)d

[

2(1 − t)

D1D2
−

(d − 2)(1 − 2t)

2D1
+

4t

D2
1D2

−
(d − 4)t

D2
1

−
(d − 2)D2t

2D2
1

+ O(t2)

]

.
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Tiziano’s NOTE: checked numerically with AvHOLO for generic me, and with Uli’s IBP
for me = 1.
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7 IBP via recurrence relations

7.1 Example: QED bubble

We consider a bubble I01 with the denominators

D0 = q2, D1 = q2 + 2(q · p), (i.e. m2
0 = p2 �m2

1 = 0). (21)
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This relation is exactly the same one gets by combining the IBPs of I01[qµ] and I1[qµ].
Tiziano’s NOTE: I recomputed it with both the recurrence and the IBPs, and now I got
agreement with the right pre-factors.
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is defined in such a way that its propagator Sos(p) behaves as S0(p) (6.14) near the mass
shell:

Zos
ψ =

[

1 − Σ2(m
2) − 2m2Σ′

1(m
2)

]−1
. (6.24)

In order to calculate Zos
m and Zos

ψ , it is convenient to introduce the function

T (t) =
1

4m
Tr(/v + 1)Σ(mv(1 + t)) = Σ1(m

2) +
[

Σ2(m
2) + 2m2Σ′

1(m
2)

]

t + · · · (6.25)

so that
Zos

m = 1 − T (0) , Zos
ψ = [1 − T ′(0)]−1 . (6.26)

k + pp p

k

Figure 52: One-loop electron self-energy

Let’s calculate it at one loop (Fig. 52). We put m = 1; the power of m will be restored
by dimensionality:

T (t) = −ie2
0

∫

ddk

(2π)d

1

D1(t) D2

1

4
Tr(/v + 1)γµ(/k + /p + 1)γν

(

gµν + ξ
kµkν
D2

)

, (6.27)

where
p = v(1 + t) , D1(t) = 1 − (k + p)2 , D2 = −k2 .

In calculating the numerator, we can express

p · k =
1

2

[

D2 − D1(t) + 1 − (1 + t)2
]

and omit terms with D1(t), because the resulting integrals contain no scale. We obtain

T (t) = −ie2
0

∫

ddk

(2π)d

1

D1(t)

[

2

D2
−

d − 2

2
(1 − t) + O(t2)

]

.

This result is gauge-independent.
Expanding

D1(t) = D1 + (D1 − D2 − 2)t + O(t2) , D1 = 1 − (k + v)2 ,

we obtain

T (t) = −ie2
0

∫

ddk

(2π)d

[

2(1 − t)

D1D2
−

(d − 2)(1 − 2t)

2D1
+

4t

D2
1D2

−
(d − 4)t

D2
1

−
(d − 2)D2t

2D2
1

+ O(t2)

]

.
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7.1 Example: QED bubble

We consider a bubble I01 with the denominators

D0 = q2, D1 = q2 + 2(q · p), (i.e. m2
0 = p2 �m2

1 = 0). (21)
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This relation is exactly the same one gets by combining the IBPs of I01[qµ] and I1[qµ].
Tiziano’s NOTE: I recomputed it with both the recurrence and the IBPs, and now I got
agreement with the right pre-factors.
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We consider a triangle I012 with kinematics corresponding to the QED vertex
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We use Eq. (27) and solve for I(d)
12 . We plug the solution in (26) and substitute the tadpole
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1 with the one in higher dimensions I(d+2)

1 using Eq. (28). Putting everything together we
get an equation which is homogeneous in the number of dimensions, having only integrals in
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Tiziano’s NOTE: checked numerically with AvHOLO for generic me, and with Uli’s IBP
for me = 1.
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Figure 3: 1-loop vertex diagrams for the QED form factor.
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H(0; x)

−1

2

[

1− 1

(1−x)
− 1

(1+x)

]

[4ζ(2) − 2H(0; x) − H(0, 0; x)

−2H(1, 0; x)]

+ (D − 4)

{

1 − 1

8

[

1− 2

(1+x)
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+
1

4

[

1 − 1
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[2(ζ(2) + ζ(3))
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+2H(−1, 0, 0; x)+2H(0,−1, 0; x)]

}

+ O
(

(D − 4)2
)
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F (1l)
2 (D, q2) = −1

2

[

1

(1 − x)
− 1

(1 + x)

]

H(0; x)

− (D − 4)

{
1

4

[
1

(1 − x)
− 1

(1 + x)

]

[ζ(2)− 4H(0; x)

−4H(0, 0; x) + 2H(−1, 0; x)]

}

+ O
(

(D − 4)2
)

, (132)

F (1l)
3 (D, q2) = 0 . (133)

where F (2l)
2 (D, q2) is exactly equal to F2(D, q2), given in Eq. (71) and F (1l)

1 (D, q2)

is obtained by subtracting Z(1l)
1 of Eq. (58) from F1(D, q2) given in Eq. (70).

Eqs. (131,132) can be analytically continued in the time-like region S = −Q2 > 0
and in particular above the physical threshold S > 4m2, where an imaginary part
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7.1 Example: QED bubble

We consider a bubble I01 with the denominators

D0 = q2, D1 = q2 + 2(q · p), (i.e. m2
0 = p2 �m2

1 = 0). (21)

An explicit calculation shows that the recurrence relation in Eq. (18) (using d = 4 � 2✏)
becomes

(1� d) I(d+2)
01 = Id

1 . (22)

By substituting the r.h.s. with Eq. (20) one gets

(1� d) I(d+2)
01 = � 1

2m2
1

d I(d+2)
1 , (23)

which, with the shift d ! d� 2 becomes

(3� d) Id
01 =

1

2m2
1

(2� d) Id
1 . (24)

This relation is exactly the same one gets by combining the IBPs of I01[qµ] and I1[qµ].
Tiziano’s NOTE: I recomputed it with both the recurrence and the IBPs, and now I got
agreement with the right pre-factors.

7.2 Example 2 (QED vertex)

We consider a triangle I012 with kinematics corresponding to the QED vertex

D0 = q̄2, D1 = (q̄ + k1)
2 �m2

e, D1 = (q̄ � k2)
2 �m2

e,

with m2
0 = 0, k21 = k22 = m2

1 = m2
2 = m2

e, (k1 + k2)
2 = s. (25)

The relevant recurrence relations are
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2
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1 = 2m2
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1 (28)

We use Eq. (27) and solve for I(d)
12 . We plug the solution in (26) and substitute the tadpole

I(d)
1 with the one in higher dimensions I(d+2)

1 using Eq. (28). Putting everything together we
get an equation which is homogeneous in the number of dimensions, having only integrals in
d+ 2,
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2
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⇣
(1� d) I(d+2)

12 +
d

2m2
e
I(d+2)
1

⌘
,

which after the shifty d ! d� 2 becomes
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⇣
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Tiziano’s NOTE: checked numerically with AvHOLO for generic me, and with Uli’s IBP
for me = 1.
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get an equation which is homogeneous in the number of dimensions, having only integrals in
d+ 2,

(2� d) I(d+2)
012 =

2

4m2
e � s

⇣
(1� d) I(d+2)

12 +
d

2m2
e
I(d+2)
1

⌘
,

which after the shifty d ! d� 2 becomes

(4� d) I(d)
012 =

2

4m2
e � s

⇣
(3� d) I(d)

12 +
d� 2

2m2
e
I(d)
1

⌘
. (29)
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for me = 1.
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Finally, we arrive at

M(n1, n2) =
Γ(−d/2 + n1 + n2)Γ(d − n1 − 2n2)

Γ(n1)Γ(d − n1 − n2)
. (6.11)

The denominator in (6.9) behaves as (k2)n1+n2 at k → ∞. Therefore, the integral
diverges if d ≥ 2(n1 + n2). At d → 4 this means n1 + n2 ≤ 2. This ultraviolet divergence
shows itself as a 1/ε pole of the first Γ function in the numerator of (6.11) (this Γ function
depends on n1 + n2, i.e., on the behaviour of the integrand at k → ∞). The integral (6.9)
can also have infrared divergences. Its denominator behaves as kn1+2n2 at k → 0, and the
integral diverges in this region if d ≤ n1 + 2n2. At d → 4 this means n1 + 2n2 ≥ 4. This
infrared divergence shows itself as a 1/ε pole of the second Γ function in the numerator
of (6.11) (this Γ function depends on n1 + 2n2, i.e., on the behaviour of the integrand at
k → 0).

Figure 50: One-loop on-shell propagator diagram

Figure 51: The basis integral

Let’s summarize. There is one generic topology of one-loop massive on-shell propagator
diagrams in QED and QCD (Fig. 50). All Feynman integrals of this class, with any
integer indices n1, n2, are proportional to V1 (2.8) (Fig. 51), with coefficients being rational
functions of d. For example, for M(1, 1),

= −
1

2

d − 2

d − 3
. (6.12)

Two-loop [23, 24, 22] and three-loop [25, 26] massive on-shell diagrams can be calculated
using integration by parts.

6.3 On-shell renormalization of electron mass and field

The electron mass m in the on-shell renormalization scheme is defined as the position of
the pole of the electron propagator. On-shell external electron lines have p2 = m2; it is
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Figure 3: 1-loop vertex diagrams for the QED form factor.

−1 +
1

2

[1

2
− 1

(1+x)

]

H(0; x)

−1

2

[
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]
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F (1l)
2 (D, q2) = −1

2

[

1

(1 − x)
− 1

(1 + x)

]

H(0; x)

− (D − 4)

{
1

4

[
1

(1 − x)
− 1

(1 + x)

]

[ζ(2)− 4H(0; x)

−4H(0, 0; x) + 2H(−1, 0; x)]

}

+ O
(

(D − 4)2
)

, (132)

F (1l)
3 (D, q2) = 0 . (133)

where F (2l)
2 (D, q2) is exactly equal to F2(D, q2), given in Eq. (71) and F (1l)

1 (D, q2)

is obtained by subtracting Z(1l)
1 of Eq. (58) from F1(D, q2) given in Eq. (70).

Eqs. (131,132) can be analytically continued in the time-like region S = −Q2 > 0
and in particular above the physical threshold S > 4m2, where an imaginary part
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7.1 Example: QED bubble

We consider a bubble I01 with the denominators

D0 = q2, D1 = q2 + 2(q · p), (i.e. m2
0 = p2 �m2

1 = 0). (21)

An explicit calculation shows that the recurrence relation in Eq. (18) (using d = 4 � 2✏)
becomes

(1� d) I(d+2)
01 = Id

1 . (22)

By substituting the r.h.s. with Eq. (20) one gets

(1� d) I(d+2)
01 = � 1

2m2
1

d I(d+2)
1 , (23)

which, with the shift d ! d� 2 becomes

(3� d) Id
01 =

1

2m2
1

(2� d) Id
1 . (24)

This relation is exactly the same one gets by combining the IBPs of I01[qµ] and I1[qµ].
Tiziano’s NOTE: I recomputed it with both the recurrence and the IBPs, and now I got
agreement with the right pre-factors.

7.2 Example 2 (QED vertex)

We consider a triangle I012 with kinematics corresponding to the QED vertex

D0 = q̄2, D1 = (q̄ + k1)
2 �m2

e, D1 = (q̄ � k2)
2 �m2

e,

with m2
0 = 0, k21 = k22 = m2
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2 = m2

e, (k1 + k2)
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The relevant recurrence relations are
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012 = I(d)

12 (26)

(1� d) I(d+2)
12 =
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1 (27)

�d I(d+2)
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e I(d)
1 (28)

We use Eq. (27) and solve for I(d)
12 . We plug the solution in (26) and substitute the tadpole

I(d)
1 with the one in higher dimensions I(d+2)

1 using Eq. (28). Putting everything together we
get an equation which is homogeneous in the number of dimensions, having only integrals in
d+ 2,

(2� d) I(d+2)
012 =

2

4m2
e � s

⇣
(1� d) I(d+2)

12 +
d

2m2
e
I(d+2)
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,

which after the shifty d ! d� 2 becomes
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. (29)

Tiziano’s NOTE: checked numerically with AvHOLO for generic me, and with Uli’s IBP
for me = 1.
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• PV decomposition

ID=4�2✏
n [q̄µq̄⌫ ] = A

2,0 ḡµ⌫ +
X

ij

A
2,ij pµi p

⌫
j (1.3)

Contracting by gµ⌫
[�2✏]:

I4�2✏
n [µ2

] = A
2,0(2✏) = (�✏)I6�2✏

n ) A
2,0 = �1

2

I6�2✏
n (1.4)

Contracting by vµ?,1v
⌫
?,2 with (v?,i · pj = 0):

I4�2✏
n [(v?,1 · q)(v?,2 · q)] = A

2,0(v?,1 · v?,2) (1.5)

) 1

(v?,1 · v?,2)
I4�2✏
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• From D ! D + 2: integrand generation of I6�2✏
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(1.8)
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Integrand Reduction@Shift-invariant monomials
= Dimensional Recurrence ~ IBP-id’s

mechanism

reducibility power of IBP-id’s within the integrand: accessed!



How about 2-Loop, 3-Loop,... 

(n� 5 + 2✏)ID=6�2✏
n =

h
cn,0I

D=4�2✏
n �

nX

i=1

c0n,i I
(i),D=6�2✏
n�1

�
n�1X

i=1

c0n�1,i I
(i)D=6�2✏
n�2

� . . .�
n�1X

i=1

c0n�1,i I
(i),D=6�2✏
1

i

(n� 1 +D)ID+2

n =

h
cn,0I

D
n �

nX

i=1

c0n,i I
(i),D+2

n�1

�
n�1X

i=1

c0n�1,i I
(i)D+2

n�2

� . . .�
n�1X

i=1

c0n�1,i I
(i),D+2

1

i

Sending D ! D � 2

(n� 3 +D)IDn =

h
cn,0I

D�2

n �
nX

i=1

c0n,i I
(i),D
n�1

�
n�1X

i=1

c0n�1,i I
(i)D
n�2

� . . .�
n�1X

i=1

c0n�1,i I
(i),D
1

i

i↵ cn,0 = 0

(n� 3 +D)IDn =

h
�

nX

i=1

c0n,i I
(i),D
n�1

�
n�1X

i=1

c0n�1,i I
(i)D
n�2

� . . .�
n�1X

i=1

c0n�1,i I
(i),D
1

i

this is an IBP-id: IDn is reducible in terms of lower-point MI’s (subtopologies).

Proposition.

8n, cn,0 is found at the fist step of the integrand reduction, and it is not altered by the

bottom-up recursive substitutions.

) the integrand reduction can detect algebraically if In is MI or not.

7. 2-Loop

Finding out the integrands that control the dimension-shift...

...better if they are also loop-momentum shift invariant

7.1 Schouten polynomials

SD
1

= q̄2
1

SD
2

= q̄2
1

q̄2
2

� (q̄
1

· q̄
2

)

2

SD
3

= q̄2
1

q̄2
2

q̄2
3

� q̄2
1

(q̄
2

· q̄
3

)

2 � q̄2
2

(q̄
1

· q̄
3

)

2 � q̄2
3

(q̄
1

· q̄
2

)

2

+ 2(q̄
1

· q̄
2

)

2

(q̄
1

· q̄
3

)

2

(q̄
2

· q̄
2

)

2

. . . = . . .

SD
loop

= . . .
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Multi-Loop: 
IBP-id’s from Dimensional-Recurrence 

Schwinger Parametrization

Tp Tpq Tq

Figure 3: The two-loop vacuum graph obtained by omitting external momenta, and its three
Schwinger parameters, which are relevant for general two-loop integrals containing v · p, v · q, !λp,
and !λq.

If a polynomial P is present, Schwinger parametrization converts it to a polynomial

in the Schwinger parameters, along with inverse powers of ∆. Then the more general

parametrization,
1

(p2
i )
νi

=
1

Γ(νi)

∫ ∞

0
dti t

νi−1
i exp(−tip

2
i ), (4.14)

can be used to rewrite Schwinger parameter monomials as integrals of the form (4.7),

typically in shifted dimensions, D → D + 2n, n = 0, 1, 2, . . . (to account for the inverse

powers of ∆). (Shifted-dimension integrals pose no problem; equations for them can be

found by rewriting the factor ∆−D/2 in eq. (4.10) as

∆−D/2 = (TpTq + TpTpq + TqTpq) × ∆−(D+2)/2 , (4.15)

and reducing the latter, shifted-dimension representation.) In principle, this approach gives

a prescription to handle any polynomial in the loop momentum, for either the interference

or helicity method.

However, as the degree
∑

i νi increases, the number of integrals of the form (4.7) grows

rapidly, and the reduction algorithm can become rather time-consuming. We have found

it useful to instead use simple algebraic relations, e.g. for the planar double box integral,

2q · k4 = p2
1 − p2

7, 2q · k3 = p2
7 − p2

2 + 2k3 · k4,

2p · k1 = p2
3 − p2

5, 2p · k2 = p2
5 − p2

4 + 2k1 · k2,

2p · q = p2
6 − p2

1 − p2
3, (4.16)

to quickly reduce integrals with polynomials of the form Pinterf. to a relatively small set of

“irreducible” integrals for each topology, plus boundary integrals generated when the p2
i

factors cancel propagators. Of course the “irreducible” integrals are only irreducible with

respect to (4.16), and not with respect to the integration-by-parts and Lorentz identities.

We compute the “irreducible” integrals once and store them.

For the planar double box, eq. (4.16) and momentum conservation, k1+k2+k3+k4 = 0,

show that the “irreducible” monomials needed to generate all Pinterf. are

PP, irred
interf. (m,n) = (2q · k1)

m (2p · k4)
n, m + n ≤ 6. (4.17)

The restriction on the sum of m and n comes from gauge theory — at most six powers

of the loop momentum can appear in the Feynman diagram numerator algebra. The
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Using Schwinger parameters, one can write the scalar integral I[1] as,

ID=4�2✏[1] =
1

(4⇡)D

7Y

i=1

Z 1

0
dti �

�D
2 e�Q/� (1.5)

where Q and � are polynomials (in kinematic variables and Schwinger parameters ti) given

in [2]. For what concerns our derivation, we need only the definition of �

� ⌘ TpTq + TpTpq + TqTpq. (1.6)

The shifting-dimension mechanism is due to the identity,

��D/2 = (TpTq + TpTpq + TqTpq)⇥��(D+2)/2 . (1.7)

If a polynomial P is present in the integrand, then to account for factors of �2
p,�

2
q , and �2

p+q

in the numerator, we take derivatives on the (�2✏)-dimensional part of the Wick rotated

integral
Z

d��2✏
p d��2✏

q exp
h
� �2

pTp � �2
qTq � �2

p+qTpq

i
/ �✏ (1.8)

with respect to Tp, Tq and Tqp,

�2
p�

✏ ! �@�✏

@Tp
, �2

q�
✏ ! �@�✏

@Tq
, �2

p+q�
✏ ! � @�✏

@Tpq
. (1.9)

Let me explicitly compute,

��2
p�

✏ ! @�✏

@Tp
= ✏�✏�1(Tq + Tpq) = ✏

(Tq + Tpq)

�
�✏ , (1.10)

from which we establish the relation

�2
p ! �✏

(Tq + Tpq)

�
, (1.11)

which has to be understood under the integral sign, as acting on �✏.

– 2 –

and the integral becomes

I =

Z  nY

i=1

xi
↵i�1

(↵i � 1)!

!
exp(C)

Z  lY

i=1

d

d
Q̄i

⇡

d/2

!
exp

 
�

lX

i=1

�iQ̄
2
i

!

=

Z  nY

i=1

xi
↵i�1

(↵i � 1)!

!
exp(C)��d/2

, (5)

where the �i are the eigenvalues of Aij and

� =
Y

i

(��i) = (�1)l det(Aij). (6)

In the last step of Eq. (5) we used the well-known Gaussian integral
Z

d

d
x exp(�ax

2) =
⇣
⇡

a

⌘d/2
, (7)

while the minus sign which gives the factor (�1)l is an e↵ect of the Wick rotation the loop
momenta Q̄i. Note that the latter could be reabsorbed by redefining Aij ! �Aij . Generating
the � is thus as easy as computing the determinant of a generic l

2-dimensional symmetric
matrix.

Now we repeat with an integrand of the form

I[N (µij)] =

Z  lY

i=1

d

d
q̄i

⇡

d/2

!
N (µij)

D

↵1
1 · · ·D↵n

n
, (8)

i.e. an integrand whose numerator is a function of the (�2✏)-dimensional components of the
loop momenta q̄i. It is easy to check that, with trivial modifications, everything is still
valid until Eq. (4), which now we formally rewrite by splitting the 4- and (�2✏)-dimensional
integrations as

I[N (µij)] =

Z  nY

i=1

xi
↵i�1

(↵i � 1)!

!Z  lY

i=1

d

4
qi

⇡

2

!
exp

0

@�
lX

i,j=1

Aij(qi · qj) + C

1

A

⇥
Z  lY

i=1

d

�2✏
~µi

⇡

�✏

!
N (µij) exp

0

@
lX

i,j=1

Aijµij

1

A

=

Z  nY

i=1

xi
↵i�1

(↵i � 1)!

!
e

C ��2
Z  lY

i=1

d

�2✏
~µi

⇡

�✏

!
N (µij) exp

0

@
lX

i,j=1

Aijµij

1

A
. (9)

The special case N = 1 is recovered by using

Z  lY

i=1

d

�2✏
~µi

⇡

�✏

!
exp

0

@
lX

i,j=1

Aijµij

1

A = �✏
. (10)

Therefore we can split the 4- and (�2✏)-dimensional part of� as ��d/2 = ��2�✏ and proceed
as usual taking derivatives of �✏ w.r.t. Aij , which, on one hand generate a numerator N [µij ]
as in Eq. (9), on the other can be combined to recreate a � which gives a dimensionally
shifted scalar integral I(d+2) by changing ��2 ! ��2+1.

2

Gram Determinant as 
Gaussian Integrals

D-shift Operator (D --> D+2)

1.2 Eq.(4.9) of [3]

Now we can reproduce the result of the first equation in Eq.(4.9) of [3], which for us

represents one of the two mechanism to generate shifted-dim integrals at the integrand

level.

Let us begin by writing,

2�p · �q = �2
p+q � �2

p � �2
q , (1.18)

hence

(2�p · �q)
2 = (�2

p+q)
2 + (�2

p)
2 + (�2

q)
2 � 2�2

p+q�
2
p � 2�2

p+q�
2
q + 2�2

p�
2
q (1.19)

The first of Eqs Eq.(4.9) of [3], can be written as

(2�p · �q)
2 � 4�2

p�
2
q (1.20)

and it reads,

(2�p · �q)
2 � 4�2

p�
2
q = (�2

p+q)
2 + (�2

p)
2 + (�2

q)
2 � 2�2

p+q�
2
p � 2�2

p+q�
2
q � 2�2

p�
2
q . (1.21)

On the r.h.s of this equation there are monomials which I computed before, so using their

expressions I get,

(2�p · �q)
2 � 4�2

p�
2
q ! �2✏(1 + 2✏)

1

�
. (1.22)

This polynomial has to be understood as acting on ��D
2 which is present in the definition

of the integral given in Eq.(1.5), therefore (cfr. Eq.(1.7)),

��D
2

�
= ��D+2

2 (1.23)

is responsible of the shifted-dimensions, D ! D + 2. Finally,

I4�2✏[(2�p · �q)
2 � 4�2

p�
2
q ] = �2✏(1 + 2✏)I6�2✏ , (1.24)

which is the correct result for Simon and al.’s integral.

2. Observation 1

It is important to remark that the combination

P1(�p,�q) ⌘ (2�p · �q)
2 � 4�2

p�
2
q =

⇣
�2
p+q � �2

p � �2
q

⌘2
� 4�2

p�
2
q , (2.1)

is not random. It is such that all terms in Tp, Tq, Tp+q and � (with their powers!) combine

in such a way to conspire and leave simply 1
� which is responsible of the dimension-shift.

The polynomial P1(�p,�q) in the two-loop case, plays the role of µ2 in the one-loop:

namely it generates I6�2✏ with ✏-dependent prefactors!
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Bern, De Freitas, Dixon

Badger, Frellesvig, Zhang

Bern, Dennen, Davies, Huang

7.7 example

q21q
2
2 � (q1 · q2)2 = (µ11µ22 � µ2

12) +m2(µ1 � µ2)
2 +

m2

2
D3 + spurious (7.8)

I123[q21q22 � (q1 · q2)2] = I123[S(4; q1, q2)] = 3 Id+2
123 (7.9)

I123[µ11µ22 � µ2
12] = I123[S(�2✏;µ1, µ2)] =

✏

2
(1 + 2✏) Id+2

123

I123[(µ1 � µ2)
2] = =

4� d

d
I12 (7.10)

�1

4
(d� 1)(d� 8) Id+2

123 =
2m2(d� 2)

d
Id
12 (7.11)

�1

4
(d� 1)(d� 8) Id+2

123 =
d(d� 2)

2m2
Id+2
12 (7.12)

8. temp

IDn [f(q, µ, pi)] ⌘
Z

dDq1
f(q, µ, pi)

D1 · · ·Dn
(8.1)

µij $
@

@Aij
(8.2)
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1 1-loop

Trivially
� = � det(A11) = �A11 (11)

and

�✏ =

Z
exp

0

@
X

ij

Aijµij

1

A =

Z
exp(A11µ11), (12)

thus
@

@A11
�✏ = �✏�✏ =

Z
µ11 exp(...), (13)

which using Eq. (9)
I[µ11] = �✏ I(d+2)

. (14)

2 2-loops

At 2-loops

� = (�1)2 det

✓
A11 A12

A12 A22

◆
= A11A22 �A

2
12 (15)

and
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Z
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X
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A =

Z
exp(A11µ11 +A22µ22 + 2A12µ12). (16)

Hence,
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✏�2 =

Z
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Plugging this into Eq. (9) gives
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. (19)
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3

3 3 loops

At 3 loops

� = (�1)3 det

✓
A11 A12 A13

A12 A22 A23A13 A23 A33

◆
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13A22 � 2A12A13A23 +A11A

2
23 +A
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12A33 �A11A22A33. (20)
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4 Higher loops

Following the same strategy as the 3-loop case
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(-2e)-Schouten Polynomials  [loops dependent]

Multi-Loop Dimensional-Recurrence (Int’nd level)

(4D)-Schouten Polynomials  [loops & legs dependent]
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Dimensional Recurrence

Integration

Integrand decomposition

Multi-Loop Dimensional-Recurrence (Int’nd level)
7.5 Multi-Loop Dimensional Recurrence

• integrand-level

S(�2✏; . . . , µi, . . .) = a1S(4; . . . , qi, . . . pj , . . .) + a0 +Di
0
s + spurious (7.2)

• integral-level

IDn [S(�2✏; . . .)] = c(✏) ID+2
n , IDn [S(4; . . .)] = c4 ID+2

n , (7.3)

therefore,

• dimensional recurrence

⇣
c(✏)� c4a1

⌘
ID+2
n = c0 IDn + subdiagrams (7.4)
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Proposition.

• @ All-Loop: The Dimensional-Recurrence for IDn is generated from the integrand

relations between S(�2✏;µij), S(4; qij , pij) and Di’s

• these relations capture the reducibility power of IBP-id’s

7.6 New D-shifting Operator

•
L-loops, m-legs, n-denominators, qi’s loop momenta, pi’s external momenta;

~q ⌘ {q1, . . . , qL}, ~p ⌘ {p1, . . . , pm�1}, ~a ⌘ {a1, . . . , an}

IDm,n[f(qi; pi);~a] ⌘
Z

dDq1 · · · dDqL
f(qi; pi)
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1 · · ·Dan

n
(7.5)

IDm,n[S(D; ~q, ~p)f(qi; pi);~a] ⌘
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dDq1 · · · dDqL
S(D; ~q, ~p) f(qi; pi)
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1 · · ·Dan

n
(7.6)

= coe↵ ⇥ ID+2
m,n [f(qi; pi);~a] (7.7)

Hence S(D; ~q, ~p) plays the role of the D+ operator, raising D ! D + 2.
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Notes

We use the same basis as for the QED self-energy paper (but, of course, now k is just an
arbitrary vector, not a physical one)

{k,E
2

, e
3

, e
4

}, with k · E
2

= k · e
3,4 = E

2

· e
3,4 = e2

3,4 = 0,

i.e. k,E
2

massive and orthogonal to each other, and e
3

, e
4

massless and orthogonal to the first
two.

The integrand is

I
123

[N ] =
N

D
1

D
2

D
3

with

D
1

= q̄2
1

�m2 = q2
1

�m2 � µ
11

D
2

= q̄2
2

�m2 = q2
2

�m2 � µ
22

D
3

= (q̄
1

� q̄
2

)2 = (q
1

� q
2

)2 � µ
11

� µ
22

+ 2µ
12

, (1)

where
µij = ~µj · ~µj = �g(�2✏)

µ⌫ q̄µi q̄
⌫
j . (2)

For now N is a generic numerator we should choose later.
Following Badger et al.’s paper and Pierpaolo’s notes, we are interested in

I
123

[4µ2

12

� 4µ
11

µ
22

] (3)

(the extra factor 4 is due to a di↵erent definition of µ
12

w.r.t. Badger). We should therefore
consider the following tensor integral

I
123

[q̄µ
1

q̄⌫
1

q̄⇢
2

q̄�
2

] = A ḡµ⌫ ḡ⇢� +B(ḡµ⇢ḡ⌫� + ḡµ� ḡ⌫⇢) (4)

in terms of form factors A and B. By contracting with g(�2✏)
µ⌫ g(�2✏)

⇢� and g(�2✏)
µ⇢ g(�2✏)

⌫� we get

I
123

[µ
11

µ
22

] = 4✏2A� 4✏B

I
123

[µ2

12

] = �2✏A+ (�2✏+ 4✏2)B (5)

which put together give

I
123

[4µ2

12

� 4µ
11

µ
22

] = 8✏(1 + 2✏)(B �A) = �2✏(1 + 2✏)I(d+2), (6)

hence

B �A = �1

4
I(d+2). (7)

T.’s observation: The results in Eq. (6) and Eq. (7) are independent of the topology. Indeed,
regardless of the loop denominators, the decomposition in Eq. (4) is the most general we can
have with that tensorial numerator, up to terms proportional to external momenta (e.g.
pµp⌫ ḡµ⌫) which however vanish when contracting with the (�2✏)-dimensional metric tensor.
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�m2 � µ
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D
2

= q̄2
2
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2

�m2 � µ
22

D
3

= (q̄
1

� q̄
2

)2 = (q
1

� q
2

)2 � µ
11

� µ
22

+ 2µ
12

, (1)

where
µij = ~µj · ~µj = �g(�2✏)

µ⌫ q̄µi q̄
⌫
j . (2)

For now N is a generic numerator we should choose later.
Following Badger et al.’s paper and Pierpaolo’s notes, we are interested in

I
123

[4µ2

12

� 4µ
11

µ
22

] (3)

(the extra factor 4 is due to a di↵erent definition of µ
12

w.r.t. Badger). We should therefore
consider the following tensor integral

I
123

[q̄µ
1

q̄⌫
1

q̄⇢
2

q̄�
2

] = A ḡµ⌫ ḡ⇢� +B(ḡµ⇢ḡ⌫� + ḡµ� ḡ⌫⇢) (4)

in terms of form factors A and B. By contracting with g(�2✏)
µ⌫ g(�2✏)

⇢� and g(�2✏)
µ⇢ g(�2✏)

⌫� we get

I
123

[µ
11

µ
22

] = 4✏2A� 4✏B

I
123

[µ2

12

] = �2✏A+ (�2✏+ 4✏2)B (5)

which put together give

I
123

[4µ2

12

� 4µ
11

µ
22

] = 8✏(1 + 2✏)(B �A) = �2✏(1 + 2✏)I(d+2), (6)

hence

B �A = �1

4
I(d+2). (7)

T.’s observation: The results in Eq. (6) and Eq. (7) are independent of the topology. Indeed,
regardless of the loop denominators, the decomposition in Eq. (4) is the most general we can
have with that tensorial numerator, up to terms proportional to external momenta (e.g.
pµp⌫ ḡµ⌫) which however vanish when contracting with the (�2✏)-dimensional metric tensor.
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7.5 Multi-Loop Dimensional Recurrence

• integrand-level

S(�2✏; . . . , µi, . . .) = a1S(4; . . . , qi, . . . pj , . . .) + a0 +Di
0
s + spurious (7.2)

• integral-level

IDn [S(�2✏; . . .)] = c(✏) ID+2
n , IDn [S(4; . . .)] = c4 ID+2

n , (7.3)

therefore,

• dimensional recurrence

⇣
c(✏)� c4a1

⌘
ID+2
n = c0 IDn + subdiagrams (7.4)

7.6 example

q21q
2
2 � (q1 · q2)2 = (µ11µ22 � µ2

12)�m2
(µ1 � µ2)

2
+m2D3 + spurious (7.5)

I123[q21q22 � (q1 · q2)2] = I123[S(4; q1, q2)] = 3 Id+2
123 (7.6)

I123[µ11µ22 � µ2
12] = I123[S(�2✏;µ1, µ2)] =

✏

2

(1 + 2✏) Id+2
123 (7.7)
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hence

I(d+2)

123

=
d

2m2(d� 1)
I(d+2)

12

. (26)

After the shift d ! d� 2 this reads

Id
123

=
d� 2

2m2(d� 3)
Id
12

. (27)

2 Second method (possibly more general)

General strategy

Contracting Eq. (4) with vµv⌫g⇢�
(�2✏), g

µ⌫
(�2✏)v

⇢v� and gµ�
(�2✏)v

⌫v⇢ we get

� 1

v2
I
123

[(v · q
2

)2µ
11

] = (�2✏)A (28)

� 1

v2
I
123

[(v · q
1

)2µ
22

] = (�2✏)A (29)

� 1

v2
I
123

[(q
1

· v)(q
2

· v)µ
12

] = (�2✏)B (30)

respectively.
Observation: if v = v? these results hold for any topology.
Therefore, using Eq. (7)

1

v2
I
123

[(v · q
2

)2µ
11

]� 1

v2
I
123

[(q
1

· v)(q
2

· v)µ
12

] = (�2✏)(B �A) =
✏

2
I(d+2). (31)

We might also need rank-2 integrals in µij . We use

I[q̄µ
1

q̄⌫
2

] = ḡµ⌫ A
12

I[q̄µ
1

q̄⌫
1

] = ḡµ⌫ A
11

I[q̄µ
2

q̄⌫
2

] = ḡµ⌫ A
22

. (32)

If we contract them with gµ⌫
(�2✏) we get

I[µ
12

] = (2✏)A
12

I[µ
11

] = (2✏)A
11

I[µ
22

] = (2✏)A
22

(33)

respectively, while with vµv⌫ we get instead

1

v2
I[(q
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· v)(q
2

· v)] = A
12

1

v2
I[(q
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· v)2] = A
11

1

v2
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2

· v)2] = A
22

. (34)
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To calculate this integral, it is most convenient to choose the “radial” variable η =
α1 + α2 (Sect. 2.1), and substitute αi = ηxi. The integral in η is trivial:

V (n1, n2, n3) =
1

Γ(n1)Γ(n2)Γ(n3)

∫ ∞

0

e−ηη−d+n1+n2+n3−1dη

×

∫

(x1x2 + x1x3 + x2x3)
−d/2xn1−1

1 xn2−1
2 xn3−1

3 δ(x1 + x2 − 1)dx1 dx2 dx3

=
Γ(−d + n1 + n2 + n3)

Γ(n1)Γ(n2)Γ(n3)

∫

[x1(1 − x1) + x3]
−d/2 xn1−1

1 (1 − x1)
n2−1xn3−1

3 dx1 dx3 .

Substituting x3 = x1(1 − x1)y, we get

V (n1, n2, n3) =
Γ(−d + n1 + n2 + n3)

Γ(n1)Γ(n2)Γ(n3)

∫ ∞

0

yn3−1dy

(y + 1)d/2

×

∫ 1

0

x−d/2+n1+n3−1(1 − x)−d/2+n2+n3−1dx

The integral
∫ ∞

0

yn3−1dy

(y + 1)d/2
=

Γ(n3)Γ(d/2 − n3)

Γ(d/2)

is easily calculated using the substitution z = 1/(y + 1); the second integral is the Euler
B-function. We arrive at the result [7]

V (n1, n2, n3) =
Γ

(

d
2 − n3

)

Γ
(

n1 + n3 −
d
2

)

Γ
(

n2 + n3 −
d
2

)

Γ(n1 + n2 + n3 − d)

Γ
(

d
2

)

Γ(n1)Γ(n2)Γ(n1 + n2 + 2n3 − d)
. (6.59)

This is the only class of two-loop diagrams for which a general formula for arbitrary ni

(not necessarily integer) is known.

Figure 55: Two-loop vacuum diagram

Let’s summarize. There is one generic topology of two-loop vacuum diagrams in QED
and QCD (Fig. 55). All Feynman integrals of this class, with any integer indices ni, are
proportional to V 2

1 (2.8) (Fig. 56), with coefficients being rational functions of d.
Three-loop massive vacuum diagrams can be calculated using integration by parts [22].
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Figure 56: The basis integral

6.7 On-shell renormalization of photon field and charge at two

loops

Using the results of the previous Section, it is not (very) difficult to calculate the photon
self-energy Π(0) at two loops. We apply (6.5) to the diagrams of Fig. 41, calculate the
derivatives in p, and reduce the problem to the vacuum integrals (6.56). The result is

Π2(0) = −
2

3

e4
0m

−4ε
0

(4π)d
Γ2(ε)

(d − 4)(5d2 − 33d + 34)

d(d − 5)
. (6.60)

Therefore, for the on-shell charge e we obtain

e2
0

e2
= Zos

α = (Zos
A )−1 = 1 − Π(0)

= 1 +
4

3

e2
0m

−2ε
0

(4π)d/2
Γ(ε) −

4

3
ε

9 + 7ε− 10ε2

(2 − ε)(1 + 2ε)

(

e2
0m

−2ε
0

(4π)d/2
Γ(ε)

)2

+ · · ·

(6.61)

where Π(0) at one (6.7)) and two (6.60) was used. In the one-loop term, we have to
substitute e2

0 = Zos
α e2 and m0 = Zos

mm, with one-loop Zos
α (6.39) and Zos

m (6.29). This
results in

e2

e2
0

= (Zos
α )−1

= 1 −
4

3

e2m−2ε

(4π)d/2
Γ(ε) − 4ε

1 + 7ε− 4ε3

(2 − ε)(1 − 2ε)(1 + 2ε)

(

e2m−2ε

(4π)d/2
Γ(ε)

)2

+ · · ·

= 1 −
4

3

e2m−2ε

(4π)d/2
Γ(ε) − ε(2 + 15ε+ · · · )

(

e2m−2ε

(4π)d/2
Γ(ε)

)2

+ · · ·

(6.62)

On the other hand, for the MS charge we have

e2(µ)

e2
0

= Z−1
α = 1 + z1

α(µ)

4πε
+ (z20 + z21ε)

(

α(µ)

4πε

)2

+ · · · (6.63)

(let’s pretend for a moment that we don’t know Zα yet). The ratio e2(µ)/e2 must be finite
at ε→ 0. At one loop, this requirement gives z1 = −4/3. Setting µ = m, we can substitute

α(m)

4πε
=

e2m−2ε

(4π)d/2
Γ(ε) =

α

4πε
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This is the only class of two-loop diagrams for which a general formula for arbitrary ni

(not necessarily integer) is known.

Figure 55: Two-loop vacuum diagram

Let’s summarize. There is one generic topology of two-loop vacuum diagrams in QED
and QCD (Fig. 55). All Feynman integrals of this class, with any integer indices ni, are
proportional to V 2

1 (2.8) (Fig. 56), with coefficients being rational functions of d.
Three-loop massive vacuum diagrams can be calculated using integration by parts [22].
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7.7 example
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2m2
Id+2
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8. temp

IDn [f(q, µ, pi)] ⌘
Z

dDq1
f(q, µ, pi)

D1 · · ·Dn
(8.1)
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IBP

2L-Vacuum

Putting everything together we get

�3I(d+2)

123

= 12(B �A) = I
123

[(q
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· q
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)2]� I
123

[q2
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I
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]� m2
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I
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The I
12

is a product of 2 tadpoles, hence we can shift it by applying twice the one-loop
identities. The only missing ingredient is therefore the dimensional shift of I

123

[2µ
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� µ
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�
µ
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] which has rank 2. We compute it using
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] = ḡµ⌫ A
00

. (12)

If we contract these equations with the d-dimensional metric tensor we have

I
123

[q̄
1

· q̄
2

] = I
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while using the 4–dimensional metric tensor we have instead

I
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I
123
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1

] = 4A
00

. (16)

Performing an integrand reduction of the l.h.sides and dropping the spurious terms, and we
perform the integrand reduction of the result we get
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Solving for the integrals in µij ,
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Hence
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Inserting this in Eq. (10), and using twice one-loop relations one the tadpole integrals, i.e.

� dI(d+2)

1-loop tadpole

= 2m2I(d)
1-loop tadpole

) d2I(d+2)

12

= 4m4I(d)
12

, (24)

and also Eq. (6), we get an equation with only integrals in d+ 2

1

4
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8m2

d(d� 8)I(d+2)
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Notes

We use the same basis as for the QED self-energy paper (but, of course, now k is just an
arbitrary vector, not a physical one)

{k,E
2

, e
3

, e
4

}, with k · E
2

= k · e
3,4 = E

2

· e
3,4 = e2

3,4 = 0,

i.e. k,E
2

massive and orthogonal to each other, and e
3

, e
4

massless and orthogonal to the first
two.

The integrand is

I
123

[N ] =
N

D
1

D
2

D
3

with

D
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= q̄2
1

�m2 = q2
1

�m2 � µ
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D
2

= q̄2
2

�m2 = q2
2

�m2 � µ
22

D
3

= (q̄
1

� q̄
2

)2 = (q
1

� q
2

)2 � µ
11

� µ
22

+ 2µ
12

, (1)

where
µij = ~µj · ~µj = �g(�2✏)

µ⌫ q̄µi q̄
⌫
j . (2)

For now N is a generic numerator we should choose later.
Following Badger et al.’s paper and Pierpaolo’s notes, we are interested in

I
123

[4µ2

12

� 4µ
11

µ
22

] (3)

(the extra factor 4 is due to a di↵erent definition of µ
12

w.r.t. Badger). We should therefore
consider the following tensor integral

I
123

[q̄µ
1

q̄⌫
1

q̄⇢
2

q̄�
2

] = A ḡµ⌫ ḡ⇢� +B(ḡµ⇢ḡ⌫� + ḡµ� ḡ⌫⇢) (4)

in terms of form factors A and B. By contracting with g(�2✏)
µ⌫ g(�2✏)

⇢� and g(�2✏)
µ⇢ g(�2✏)

⌫� we get

I
123

[µ
11

µ
22

] = 4✏2A� 4✏B

I
123

[µ2

12

] = �2✏A+ (�2✏+ 4✏2)B (5)

which put together give

I
123

[4µ2

12

� 4µ
11

µ
22

] = 8✏(1 + 2✏)(B �A) = �2✏(1 + 2✏)I(d+2), (6)

hence

B �A = �1

4
I(d+2). (7)

T.’s observation: The results in Eq. (6) and Eq. (7) are independent of the topology. Indeed,
regardless of the loop denominators, the decomposition in Eq. (4) is the most general we can
have with that tensorial numerator, up to terms proportional to external momenta (e.g.
pµp⌫ ḡµ⌫) which however vanish when contracting with the (�2✏)-dimensional metric tensor.
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7.5 Multi-Loop Dimensional Recurrence

• integrand-level

S(�2✏; . . . , µi, . . .) = a1S(4; . . . , qi, . . . pj , . . .) + a0 +Di
0
s + spurious (7.2)

• integral-level

IDn [S(�2✏; . . .)] = c(✏) ID+2
n , IDn [S(4; . . .)] = c4 ID+2

n , (7.3)

therefore,

• dimensional recurrence

⇣
c(✏)� c4a1

⌘
ID+2
n = c0 IDn + subdiagrams (7.4)

7.6 example

q21q
2
2 � (q1 · q2)2 = (µ11µ22 � µ2

12)�m2
(µ1 � µ2)

2
+m2D3 + spurious (7.5)

I123[q21q22 � (q1 · q2)2] = I123[S(4; q1, q2)] = 3 Id+2
123 (7.6)

I123[µ11µ22 � µ2
12] = I123[S(�2✏;µ1, µ2)] =

✏

2

(1 + 2✏) Id+2
123 (7.7)
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hence

I(d+2)

123

=
d

2m2(d� 1)
I(d+2)

12

. (26)

After the shift d ! d� 2 this reads

Id
123

=
d� 2

2m2(d� 3)
Id
12

. (27)

2 Second method (possibly more general)

General strategy

Contracting Eq. (4) with vµv⌫g⇢�
(�2✏), g

µ⌫
(�2✏)v

⇢v� and gµ�
(�2✏)v

⌫v⇢ we get

� 1

v2
I
123

[(v · q
2

)2µ
11

] = (�2✏)A (28)

� 1

v2
I
123

[(v · q
1

)2µ
22

] = (�2✏)A (29)

� 1

v2
I
123

[(q
1

· v)(q
2

· v)µ
12

] = (�2✏)B (30)

respectively.
Observation: if v = v? these results hold for any topology.
Therefore, using Eq. (7)

1

v2
I
123

[(v · q
2

)2µ
11

]� 1

v2
I
123

[(q
1

· v)(q
2

· v)µ
12

] = (�2✏)(B �A) =
✏

2
I(d+2). (31)

We might also need rank-2 integrals in µij . We use

I[q̄µ
1

q̄⌫
2

] = ḡµ⌫ A
12

I[q̄µ
1

q̄⌫
1

] = ḡµ⌫ A
11

I[q̄µ
2

q̄⌫
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] = ḡµ⌫ A
22

. (32)

If we contract them with gµ⌫
(�2✏) we get

I[µ
12

] = (2✏)A
12

I[µ
11

] = (2✏)A
11

I[µ
22

] = (2✏)A
22

(33)

respectively, while with vµv⌫ we get instead
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v2
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v2
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. (34)
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To calculate this integral, it is most convenient to choose the “radial” variable η =
α1 + α2 (Sect. 2.1), and substitute αi = ηxi. The integral in η is trivial:

V (n1, n2, n3) =
1

Γ(n1)Γ(n2)Γ(n3)

∫ ∞

0

e−ηη−d+n1+n2+n3−1dη

×

∫

(x1x2 + x1x3 + x2x3)
−d/2xn1−1

1 xn2−1
2 xn3−1

3 δ(x1 + x2 − 1)dx1 dx2 dx3

=
Γ(−d + n1 + n2 + n3)

Γ(n1)Γ(n2)Γ(n3)

∫

[x1(1 − x1) + x3]
−d/2 xn1−1

1 (1 − x1)
n2−1xn3−1

3 dx1 dx3 .

Substituting x3 = x1(1 − x1)y, we get

V (n1, n2, n3) =
Γ(−d + n1 + n2 + n3)

Γ(n1)Γ(n2)Γ(n3)

∫ ∞

0

yn3−1dy

(y + 1)d/2

×

∫ 1

0

x−d/2+n1+n3−1(1 − x)−d/2+n2+n3−1dx

The integral
∫ ∞

0

yn3−1dy

(y + 1)d/2
=

Γ(n3)Γ(d/2 − n3)

Γ(d/2)

is easily calculated using the substitution z = 1/(y + 1); the second integral is the Euler
B-function. We arrive at the result [7]

V (n1, n2, n3) =
Γ

(

d
2 − n3

)

Γ
(

n1 + n3 −
d
2

)

Γ
(

n2 + n3 −
d
2

)

Γ(n1 + n2 + n3 − d)

Γ
(

d
2

)

Γ(n1)Γ(n2)Γ(n1 + n2 + 2n3 − d)
. (6.59)

This is the only class of two-loop diagrams for which a general formula for arbitrary ni

(not necessarily integer) is known.

Figure 55: Two-loop vacuum diagram

Let’s summarize. There is one generic topology of two-loop vacuum diagrams in QED
and QCD (Fig. 55). All Feynman integrals of this class, with any integer indices ni, are
proportional to V 2

1 (2.8) (Fig. 56), with coefficients being rational functions of d.
Three-loop massive vacuum diagrams can be calculated using integration by parts [22].
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7.7 example
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8. temp
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2L-Vacuum

Putting everything together we get
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The I
12

is a product of 2 tadpoles, hence we can shift it by applying twice the one-loop
identities. The only missing ingredient is therefore the dimensional shift of I
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If we contract these equations with the d-dimensional metric tensor we have

I
123

[q̄
1

· q̄
2

] = I
123

[q
1

· q
2

� µ
12

] = dA
12

(13)

I
123

[q̄2
1

] = I
123

[q2
1

� µ
11

] = dA
00

, (14)

while using the 4–dimensional metric tensor we have instead

I
123

[q
1

· q
2

] = 4A
12

(15)

I
123

[q2
1

] = 4A
00

. (16)

Performing an integrand reduction of the l.h.sides and dropping the spurious terms, and we
perform the integrand reduction of the result we get

dA
12

= m2I
123

� 1

2
I
12

(17)

dA
00

= m2I
123

(18)

4A
12

= m2I
123

+ I
123

[µ
12

]� 1

2
I
12

(19)

4A
00

= m2I
123

+ I
123

[µ
11

] = m2I
123

+ I
123

[µ
22

] (20)

Solving for the integrals in µij ,

I
123

[µ
12

] =
4� d

d
(m2I

123

� 1

2
I
12

) (21)

I
123

[µ
11

] = I
123

[µ
22

] =
4� d

d
(m2I

123

) (22)

Hence

I
123

[2µ
12

� µ
11

� µ
22

] = �4� d

d
I
12

. (23)

Inserting this in Eq. (10), and using twice one-loop relations one the tadpole integrals, i.e.
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Telescopic Id’y

The reduction “knows” that the 
integral is reducible, at its first step 
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7.5 Multi-Loop Dimensional Recurrence

• integrand-level

S(�2✏; . . . , µi, . . .) = a1S(4; . . . , qi, . . . pj , . . .) + a0 +Di
0s + spurious (7.2)

• integral-level

IDn [S(�2✏; . . .)] = c(✏) ID+2
n , IDn [S(4; . . .)] = c4 ID+2

n , (7.3)

therefore,

• dimensional recurrence
⇣
c(✏)� c4a1

⌘
ID+2
n = c0 IDn + subdiagrams (7.4)

7.6 New D-shifting Operator

•
L-loops, m-legs, n-denominators, qi’s loop momenta, pi’s external momenta;
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The invariants appearing in this expression can be safely continued from the region −s123 ≥ −s13−s23 ≥ 0
to the physical region s123 ≥ s13 + s23 ≥ 0. The arguments of the hypergeometric functions are ratios
of invariants, they are not changed by the analytic continuation. The non-integer powers of invariants
appearing as coefficients acquire imaginary parts, their signs are uniquely determined by the convention
−p2 = −p2 − i0, thus fixing the imaginary part of the whole expression. The above equation reproduces
the well-known result from the literature, e.g. [21]. It should be kept in mind that in applying dimensional
regularisation, no distinction between infrared and ultraviolet poles, which both show up as 1/(d − 4)
in the above equation and in the coefficient A2,LO, is made. Needless to say, those singularities are an
intrinsic feature of the dimensional regularisation, and by non means an artifact of the differential equation
approach. In particular, the most singular part of the above one loop integral, which is ultraviolet finite,
as well as of the two loop integrals discussed in the following section, arises from soft configurations, and
can in principle be re-derived by applying a strong ordering procedure [22] to the integrands.

When the box integral is expressed in the above form, where no expansion around d = 4 has yet been
performed, analytic continuations, e.g. to the on-shell case s123 = 0 or to collinear and soft limits sij = 0,
can be made with ease.

5 Results on Two-Loop Four-Point Functions

In the following, we shall outline how the techniques derived in Sections 2 and 3 can be applied to
the computation of two-loop integrals appearing in amplitudes for the decay of one massive into three
massless particles: two-loop four-point functions with one off-shell leg. The main purpose of this section
is to illustrate applications of the tools developed above to non-trivial problems; the list of integrals given
here is far from complete. We provide a comprehensive list of master integrals only up to t = 5, for t = 6
and t = 7 only reducible integrals are quoted.

A prefactor common to all massless scalar integrals is

Sd =

[

(4π)
4−d
2

Γ(3 − d/2)Γ2(d/2 − 1)

Γ(d − 3)

]

, (5.1)

which is also appearing in all counterterms in the MS–scheme.
In the following, the notation of external momenta is as follows: pi denotes an on-shell momentum,

pij(k) denotes an off-shell momentum, being the sum of two (three) on-shell momenta pi, pj(, pk) with
sij(k) = (pij(k))

2. p is an arbitrary momentum.

5.1 t = 3

For two-loop integrals with t = 3, only one topology exists: the two-loop vacuum bubble. The corre-
sponding integral fulfils a homogeneous differential equation, which can not be used to infer any boundary
condition. The integral can however be computed using Feynman parameters:

!
!"
#$

p
=

(

Sd

16π2

)2 Γ(5 − d)Γ2(d − 3)

Γ2(3 − d/2)Γ(d/2 − 1)Γ(3d/2 − 3)

1

(d − 3)(d − 4)

(

−p2
)d−3

≡ A3

(

−p2
)d−3

. (5.2)

5.2 t = 4

Several different two-loop topologies exist for t = 4. Two types of two-point functions are encountered.
The first can be reduced to

! !
!"
#$

p
=

3d − 8

d − 4

1

p2
!

!"
#$

p
(5.3)
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using IBP identities. The second is the product of two one-loop bubble integrals and yields

!
!"
#$

!"
#$

p
= (A2,LO)2 (−p2)d−4 , (5.4)

which generalises trivially to a three-point function

! !
"

!"
#$

!"
#$

p123 p12

p3

= (A2,LO)2 (−s123)
d
2
−2(−s12)

d
2
−2 . (5.5)

Only one of the master integrals at t = 4 fulfils a homogeneous differential equation: a two-loop vertex
integral with one off-shell leg. This integral can also be computed using Feynman parameters:

!
!

!

!"
#$

p12
p1

p2

=

(

Sd

16π2

)2 Γ3(d − 3)Γ(5 − d)

Γ(3 − d/2)Γ2(d/2 − 1)Γ(3d/2 − 4)

−2

(d − 3)(d − 4)2
(−s12)

d−4

≡ A4 (−s12)
d−4 . (5.6)

The other vertex integral topology with one off-shell leg can be reduced using IBP identities:

!
!

!
"

!"
#$

p12
p1

p2

= −
3d − 8

d − 4

1

s12

!
!"
#$

p12
. (5.7)

Among the three vertex integrals with two off-shell legs, only one can be reduced using IBP and LI
identities:

!
!

!
"

!"
#$

p123
p12

p3

=
3d − 8

d − 4

1

s123 − s12

[

!
!"
#$

p12
− !

!"
#$

p123
]

. (5.8)

The two remaining ones are master integrals. Written out in terms of propagators, they read:

!
!

!

!"
#$

p123
p12

p3

=

∫

ddk

(2π)d

ddl

(2π)d

1

k2l2(k − p123)2(k − l − p12)2
, (5.9)

!
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!
"
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#$

p123
p3

p12

=

∫

ddk

(2π)d

ddl

(2π)d

1

k2l2(l − p12)2(k − l − p3)2
. (5.10)

Both fulfil inhomogeneous differential equations. For a vertex p123 → p12 + p3, the appropriate variables
for the differential equations are s123 and s12. To illustrate the structure of the differential equations, we
quote them for (5.9):

s123
∂

∂s123

!
!

!

!"
#$

p123
p12

p3

=
d − 4

2

2s123 − s12

s123 − s12
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3d − 8

2

1
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p12
,

s12
∂
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!
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#$
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p12

p3

= −
d − 4

2

s12

s123 − s12

!
!

!
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#$

p123
p12

p3
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−A3
(3d − 8)(3d − 10)

2(d − 4)2
1

−s123
[

(−s13)
d−4 S1

(

d

2
− 1, 1, 1, d− 2, 5 − d,

s23

s123
,

s13

s123

)

+ (−s23)
d−4 S1

(

d

2
− 1, 1, 1, d− 2, 5 − d,

s13

s123
,

s23

s123

)

]

. (5.28)

The integrals (5.25) and (5.26) are one-loop bubble insertions into the one-loop box and have already
been computed for arbitrary powers of the propagators in [10]. The integrals (5.27) and (5.28) were, to
our knowledge, not known up to now. In the reduction of integrals of the topology (5.28), one finds two
master integrals, whose differential equations decouple in the variable ∆ ≡ s13 − s23. The second master
integral for this topology can be found by rearranging one of the differential equations:

! "

""

#
#

#!p123

p1

p2

p3

=

−
4s12s123

s13s23

∂

∂s12 ! "

""

#
#

#
p123

p1

p2

p3

+(d − 4)
3s12 + s123

s13s23 ! "

""

#
#

#
p123

p1

p2

p3

−
(d − 3)(3d − 10)

d − 4

1

s13s23



 "
"

"

"#
$%

p123
p13

p2

+ "
"

"

"#
$%

p123
p23

p1





+
2(d − 3)(3d − 8)(3d − 10)

(d − 4)2
1

s13s23

(

1

s13

"
"#
$%

p13
+

1

s23

"
"#
$%

p23
)

. (5.29)

Finally, products of one-loop vertex with one-loop bubble integrals also yield topologies with t = 5.
These can all be reduced to (5.5) and are not quoted explicitly.

The complete list of integrals at t = 5 which were derived in this section can now be used to compute
all integrals at t = 6 and t = 7 which can be reduced using IBP and LI identities. The results of this
reduction are summarised in the following.

5.4 t = 6

Two-loop integrals with t = 6 arising in calculations in covariant gauges must be three- or four-point
functions. Since we are concerned with subgraphs that can appear in the reduction of four-point functions
with one off-shell leg, we need to consider three-point functions with up to two off-shell legs. For general
three-point functions at t = 6, one finds three distinct topologies: two planar and one crossed arrangement
of the loop momenta. The crossed graphs correspond to master integrals, while the planar graphs are
reducible, as first pointed out in [15], where the three-point integral with one off-shell leg was computed.
We reproduce these results:

"
"

"
##
$$

p12
p1

p2

=
3(d − 3)(3d − 10)

(d − 4)2
1

s2
12

"
"

"

"#
$%

p12
p1

p2

16

+
4(d − 3)2

(d − 4)2
1

s2
12
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p12

−
6(d − 3)(3d − 8)(3d − 10)

(d − 4)3
1

s3
12

!
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#$

p12
, (5.30)
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3(d − 3)(3d − 8)(3d − 10)

(d − 4)2(d − 5)
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!
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p12
. (5.31)

The results for two off-shell legs read:
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For t = 6, both one-loop bubble insertions on propagators of the one-loop box can be reduced:
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The boundary conditions for s123 = 0 or s12 = 0 are obtained directly from the vertex integrals with one
off-shell leg quoted above. Using these, one finds
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(5.12)
The second master integral can be obtained from this by analytic continuation of the hypergeometric
function:
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(5.13)
Vertex integrals with three off-shell legs can not appear as subtopologies in two-loop four-point func-

tions with one off-shell leg.

5.3 t = 5

The two-loop two-point function with t = 5 is a well known example [3, 4] for the application of IBP
identities:
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(5.14)
The four different t = 5 three-point functions with one off-shell leg can also be reduced by using IBP

and LI identities:

!
!

!
"""
###

p12
p1

p2

=
(d − 3)(3d − 8)(3d − 10)

(d − 4)3
1

(s12)2
!

!"
#$

p12
, (5.15)

!
!

!
"""
###$

$$
p12

p1

p2

=
(d − 3)(3d − 10)

(d − 4)2
1

s12

!
!

!

!"
#$

p12
p1

p2

−
(d − 3)(3d − 8)(3d − 10)

(d − 4)3
1

(s12)2
!

!"
#$

p12
, (5.16)

!
!

!

###
%%

%
p12

p1

p2

= −
(3d − 8)(3d − 10)

(d − 4)2
1

(s12)2
!

!"
#$

p12
, (5.17)

! !

!

%
%

%%p12

p1

p2

= −
3d − 10

2(d − 4)

1

s12

!
!

!

!"
#$

p12
p1

p2

. (5.18)

By applying IBP and LI identities, it is likewise possible to reduce all but one t = 5 three-point
function with two off-shell legs:

!
!

!
"""
###

p123
p12

p3

= −
(d − 3)(3d − 10)

(d − 4)2
1

s123 − s12

!
!

!
"

!"
#$

p123
p3

p12

13

Examples of Reducible Integrals 

[Absence of] constant term  <==>  [Not] Master Integral



Multivariate Polynomial Division

one ingredient: Feynman denominator

one operation: partial fractioning

Dimensional Recurrence at the integrand level

embedding: Unitarity, Factorization, and loop-momentum shift invariance

Minimal set of MI’s 

Conclusions 

 a new tool for the Decomposition of Scattering Amplitudes

Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes

P. Mastrolia,1, 2 E. Mirabella,1 G. Ossola,3, 4 and T. Peraro1

1
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We present the integrand reduction via multivariate polynomial division as a natural technique
to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the
integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of
loops and external legs, which can be used to obtain the decomposition of any integrand analytically
with a finite number of algebraic operations. The general results are illustrated by applications to
two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can
also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

Introduction – In the perturbative approach to quan-
tum field theories, the elements of the scattering matrix,
which are the scattering amplitudes, can be expressed in
terms of Feynman diagrams. The latter generally rep-
resent multiple integrals whose integrand is a rational
function of the integration variables. Scattering ampli-
tudes are analytic functions of the kinematic variables of
the interacting particles, hence they are determined by
their singularities, whose location in the complex plane
is specified by a set of algebraic equations. The analysis
of the singularity structure can be used to define the dis-
continuities of a Feynman integral across the branch cuts
attached to the Landau singularities. They are encoded
in the Cutkosky formula and correspond to the unitarity
conditions of the scattering amplitude. In the canonical
formalism, the unitarity cut conditions have been used
for the evaluation of the scattering amplitudes trough
dispersive Cauchy’s integral representations. However,
the dispersive approach is well known to su↵er from am-
biguities which limit its applicability for the quantitative
evaluation of generic Feynman integrals in gauge theo-
ries.

In the more modern interpretation of unitarity, cut
conditions and analyticity are successfully exploited for
decomposing scattering amplitudes in terms of indepen-
dent functions – rather than for their direct evaluation.
The basic functions entering the amplitudes decomposi-
tion are univocally characterised by their singularities.
The singularity structure can be accessed before inte-
gration, at the integrand level [1, 2]. Therefore, the
decomposition of the integrated amplitudes can be de-
duced from the the decomposition of the corresponding
integrands. The integrand-reduction methods [1–7] rely
on the existence of a relation between the numerator and
the denominators of each Feynman integral. A generic
numerator can be expressed as a combination of (prod-
ucts of) denominators, multiplied by polynomial coe�-
cients, which correspond to the residues at the multiple
cuts of the diagrams. The multiple-cut conditions, gen-
erally fulfilled for complex values of the integration vari-

Figure 1. Integrand recurrence relation for a generic `-loop
integrand.

ables, can be viewed as projectors isolating each residue.
The latter, depicted as an on-shell cut diagram, repre-
sents the amplitude factorized into a product of simpler
amplitudes, either with fewer loops or a lower number of
legs.
The residues are multivariate polynomials in those

components of the propagating momenta which corre-
spond to irreducible scalar products (ISPs), that cannot
be decomposed in terms of denominators. The ISPs ei-
ther yield spurious contributions, which vanish upon in-
tegration, or generate the basic integrals entering the am-
plitude decomposition [2, 4].
Within the integrand reduction methods, the problem

of decomposing any scattering amplitude in terms of in-
dependent integrals is therefore reduced to the algebraic
problem of reconstructing the residues at its multiple
cuts.
In Refs. [6, 7] the determination of the residues at the

multiple cuts has been formulated as a problem of mul-
tivariate polynomial division, and solved using algebraic
geometry techniques. These techniques allowed one to
prove that the integrand decomposition, originally formu-
lated for one-loop amplitudes [1], is valid and applicable
at any order in perturbation theory, irrespective of the
complexity of the topology of the involved diagrams, be-
ing them massless or massive, planar or non planar. This
novel reduction algorithm has been applied to the decom-
position of supersymmetric amplitudes at two and three
loops [8, 9]. Also, it has been used for the identification
of the two-loop integrand basis in four dimensions [10],
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The Maximum-Cut Theorem
4. The Maximum-cut Theorem

At ` loops, in four dimensions, we define a maximum-cut as a (4`)-ple cut

Di1 = Di2 = · · · = Di4` = 0 ,

which constrains completely the components of the loop momenta. In four dimensions

this implies the presence of four constraints for each loop momenta. We assume that, in

non-exceptional phase-space points, a maximum-cut has a finite number ns of solutions,

each with multiplicity one. Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial para-

matrised by ns coe�cients, which admits a univariate representation of degree (ns � 1).

Proof. Let us parametrize the propagators using 4` variables z = (z1, . . . z4`). In this

parametrization, the solutions of the maximum-cut read,

z(i) =
⇣
z

(i)
1 , . . . , z

(i)
4`

⌘
, with i = 1, . . . , ns .

Let Ji1···i4` be the ideal generated by the on-shell denominators, Ji1···i4` = hDi1 , . . . , Di4`i .
According to the assumptions, the number ns of the solutions is finite, and each of them

has multiplicity one, therefore Ji1···i4` is zero-dimensional and radical 1, In this case, the

Finiteness Theorem ensures that the remainder of the division of any polynomial modulo

Ji1···i4` can be parametrised exactly by ns coe�cients.

Moreover, up to a linear coordinate change, we can assume that all the solutions of the

system have distinct first coordinate z1, i.e. z

(i)
1 6= z

(j)
1 8 i 6= j. We observe that Ji1···i4`

and z1 are in the Shape Lemma position therefore a Gröbner basis for the lexicographic

order z1 < z2 < · · · < zn is Gi1···i4` = {g1, . . . , g4`}, in the form

8
>>>><

>>>>:

g1(z) = f1(z1)

g2(z) = z2 � f2(z1)
...

g4`(z) = z4` � f4`(z1) .

The functions fi are univariate polynomials in z1. In particular f1 is a rank-ns square-free

polynomial

f1(z1) =
nsY

i=1

⇣
z1 � z

(i)
1

⌘
,

i.e. it does not exhibits repeated roots. The multivariate division of Ni1···ı4` modulo Gi1···i4`
leaves a remainder �i1···i4` which is a univariate polynomial in z1 of degree (ns � 1) in

accordance with the Finiteness Theorem.

1
Given an ideal J , the radical of J is

p
J ⌘ {f 2 P [z] : 9 s 2 N, fs 2 J }. J is radical i↵ J =

p
J .

– 8 –
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(�1)

z
1

z
2

· · · zn
=

1

z
1

(z
1

� z
2

) · · · (z
1

� zn)

+
1

(z
2

� z
1

)z
2

· · · (z
2

� zn)
+ . . . . . .

+
1

(zn � z
1

)(zn � z
2

) · · · (zn � zn�1

)zn
(4.9)

5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D
0

= D
1

= . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

– 7 –



5

IV. THE MAXIMUM-CUT THEOREM

At ! loops, in four dimensions, we define a maximum-
cut as a (4!)-ple cut

Di1 = Di2 = · · · = Di4! = 0 , (23)

which constrains completely the components of the loop
momenta. In four dimensions this implies the presence of
four constraints for each loop momenta. We assume that,
in non-exceptional phase-space points, a maximum-cut
has a finite number ns of solutions, each with multiplicity
one. Under this assumption we have the following

Theorem IV.1 (Maximum cut) The residue at the
maximum-cut is a polynomial paramatrised by ns coeffi-
cients, which admits a univariate representation of degree
(ns − 1).

Proof. Let us parametrize the propagators using 4! vari-
ables z = (z1, . . . z4!). In this parametrization, the solu-
tions of the maximum-cut read,

z(i) =
(

z
(i)
1 , . . . , z

(i)
4!

)

with i = 1, . . . , ns . (24)

Let Ji1···i4! be the ideal generated by the on-shell de-
nominators, Ji1···i4! = 〈Di1 , . . . , Di4!〉 .
According to the assumptions, the number ns of the so-
lutions of (23) is finite, and each of them has multiplicity
one, therefore Ji1···i4! is zero-dimensional [20, 33] and
radical [34] [17]. In this case, the Finiteness Theorem
[17, 20] ensures that the remainder of the division of any
polynomial modulo Ji1···i4! can be parametrised exactly
by ns coefficients.

Moreover, up to a linear coordinate change, we can
assume that all the solutions of the system have distinct

first coordinate z1, i.e. z
(i)
1 $= z

(j)
1 ∀ i $= j. We observe

that Ji1···i4! and z1 are in the Shape Lemma position [19,
20, 25, 26], therefore a Gröbner basis for the lexicographic
order z1 < z2 < · · · < zn is Gi1···i4! = {g1, . . . , g4!}, in
the form



















g1(z) = f1(z1)
g2(z) = z2 − f2(z1)

...
g4!(z) = z4! − f4!(z1)

(25)

The functions fi are univariate polynomials in z1. In
particular f1 is a rank-ns square-free polynomial [25],

f1(z1) =
ns
∏

i=1

(

z1 − z
(i)
1

)

, (26)

i.e. it does not exhibits repeated roots. The multivari-
ate division of Ni1···ı4! modulo Gi1···i4! leaves a remainder
∆i1···i4! which is a univariate polynomial in z1 of degree
(ns−1) [26], in accordance with the Finiteness Theorem.

The maximum-cut theorem ensures that the
maximum-cut residue, at any loop, is completely

FIG. 1. The on-shell diagrams in the picture are exam-
ples of maximum-cuts. The first diagram in the left column
represents the 5ple-cut of the 5-point one-loop dimensionally
regulated amplitude. All the other on-shell diagrams are con-
sidered in four dimensions. For each of them, the general
structure of the residue ∆ (according to the Shape Lemma)
and the corresponding value of ns are provided.

determined by the ns distinct solutions of the cut-
conditions. In particular it can be reconstructed by
sampling the integrand on the solutions of the maximum
cut itself.
At one loop and in (4 − 2ε)-dimensions, the 5-ple

cuts are maximum-cuts. The remarkably simple struc-
ture of the Gröbner basis in Eq. (16) is dictated by the
maximum-cut theorem. Moreover in this case ns = 1,
thus the residue in Eq. (17) is a constant.
The structures of the residues of the maximum cut,

together with the corresponding values of ns, for a set
of one-, two-, and three-loop diagrams are collected in
Figure 1.

The calculations of Sections III and IV have been
carried out using the package S@M [35] and the func-
tions GroebnerBasis and PolynomialReduce of Math-

ematica, respectively needed for the generation of the
Gröbner basis and the polynomial division.

V. CONCLUSIONS

We presented a new algebraic approach, where the
evaluation of scattering amplitudes is addressed by using
multivariate polynomial division, with the components
of the loop-momenta as indeterminates. We found a re-
currence relation to construct the integrand decomposi-
tion of arbitrary scattering amplitudes, independently of
the number of loops. The recursive algorithm is based
on the Weak Nullstellensatz Theorem and on the divi-
sion modulo the Gröbner basis associated to all possi-
ble multi-particle cuts. Using this technique, we red-
erived the well-known one-loop integrand decomposition
formula. Finally, by means of the Finiteness Theorem
and of the Shape Lemma, we proved that the residue at
the maximum-cuts is parametrised exactly by a number
of coefficients equal to the number of solutions of the cut
itself.

Examples of Maximum-Cuts
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7.7 example

q21q
2
2 � (q1 · q2)2 = (µ11µ22 � µ2

12) +m2(µ1 � µ2)
2 +

m2

2
D3 + spurious (7.8)

I123[q21q22 � (q1 · q2)2] = I123[S(4; q1, q2)] = 3 Id+2
123 (7.9)

I123[µ11µ22 � µ2
12] = I123[S(�2✏;µ1, µ2)] =

✏

2
(1 + 2✏) Id+2

123

I123[(µ1 � µ2)
2] = =

4� d

d
I12 (7.10)

�1

4
(d� 1)(d� 8) Id+2

123 =
2m2(d� 2)

d
Id
12 (7.11)

�1

4
(d� 1)(d� 8) Id+2

123 =
d(d� 2)

2m2
Id+2
12 (7.12)

8. temp

IDn [f(q, µ, pi)] ⌘
Z

dDq
f(q, µ, pi)

D1 · · ·Dn
(8.1)

µij $ @

@Aij
(8.2)

µ2 (8.3)
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1. Definitions

Loop Momentum Decomposition:

q̄ = q + µ , q̄2 = q2 � µ2 , (1.1)

Z
ddq̄ ⌘

Z
d�2✏µ

Z
d4q =

Z
d⌦�1�2✏

Z 1

0
dµ2

(µ2
)

�1�✏ , ⌦n ⌘ 2⇡
n+1
2

�

⇣
n+1
2

⌘
(1.2)

q̄ in d-dimensions

q in 4-dimensions

µ in (�2✏)-dimensions

• PV decomposition

ID=4�2✏
n [q̄µq̄⌫ ] = A2,0 ḡµ⌫ +

X

ij

A2,ij pµi p
⌫
j (1.3)

Contracting by gµ⌫[�2✏]:

I4�2✏
n [µ2

] = A2,0(2✏) = (�✏)I6�2✏
n ) A2,0 = �1

2

I6�2✏
n (1.4)

Contracting by vµ?,1v
⌫
?,2 with (v?,i · pj = 0):

I4�2✏
n [(v?,1 · q)(v?,2 · q)] = A2,0(v?,1 · v?,2) (1.5)

) 1

(v?,1 · v?,2)
I4�2✏
n [(v?,1 · q)(v?,2 · q)] = �1

2

I6�2✏
n (1.6)

• From D ! D + 2: integrand generation of I6�2✏
n :

I4�2✏
n [µ2

] = (�✏)I6�2✏
n ,

1

(v?,1 · v?,2)
I4�2✏
n [(v?,1 · q)(v?,2 · q)] = �1

2

I6�2✏
n (1.7)

(tadpole) I4�2✏
1 [q2] = �1

2

I6�2✏
1 (1.8)
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−A3
(3d − 8)(3d − 10)

2(d − 4)2
1

−s123
[

(−s13)
d−4 S1

(

d

2
− 1, 1, 1, d− 2, 5 − d,

s23

s123
,

s13

s123

)

+ (−s23)
d−4 S1

(

d

2
− 1, 1, 1, d− 2, 5 − d,

s13

s123
,

s23

s123

)

]

. (5.28)

The integrals (5.25) and (5.26) are one-loop bubble insertions into the one-loop box and have already
been computed for arbitrary powers of the propagators in [10]. The integrals (5.27) and (5.28) were, to
our knowledge, not known up to now. In the reduction of integrals of the topology (5.28), one finds two
master integrals, whose differential equations decouple in the variable ∆ ≡ s13 − s23. The second master
integral for this topology can be found by rearranging one of the differential equations:

! "

""

#
#

#!p123

p1

p2

p3

=

−
4s12s123

s13s23

∂

∂s12 ! "

""

#
#

#
p123

p1

p2

p3

+(d − 4)
3s12 + s123

s13s23 ! "

""

#
#

#
p123

p1

p2

p3

−
(d − 3)(3d − 10)

d − 4

1

s13s23



 "
"

"

"#
$%

p123
p13

p2

+ "
"

"

"#
$%

p123
p23

p1





+
2(d − 3)(3d − 8)(3d − 10)

(d − 4)2
1

s13s23

(

1

s13

"
"#
$%

p13
+

1

s23

"
"#
$%

p23
)

. (5.29)

Finally, products of one-loop vertex with one-loop bubble integrals also yield topologies with t = 5.
These can all be reduced to (5.5) and are not quoted explicitly.

The complete list of integrals at t = 5 which were derived in this section can now be used to compute
all integrals at t = 6 and t = 7 which can be reduced using IBP and LI identities. The results of this
reduction are summarised in the following.

5.4 t = 6

Two-loop integrals with t = 6 arising in calculations in covariant gauges must be three- or four-point
functions. Since we are concerned with subgraphs that can appear in the reduction of four-point functions
with one off-shell leg, we need to consider three-point functions with up to two off-shell legs. For general
three-point functions at t = 6, one finds three distinct topologies: two planar and one crossed arrangement
of the loop momenta. The crossed graphs correspond to master integrals, while the planar graphs are
reducible, as first pointed out in [15], where the three-point integral with one off-shell leg was computed.
We reproduce these results:

"
"

"
##
$$

p12
p1

p2

=
3(d − 3)(3d − 10)

(d − 4)2
1

s2
12

"
"

"

"#
$%

p12
p1

p2
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Schouten =
       + D6 * ( 1/8*mu12*mH^4 + 1/8*q1.e3*q2.e4*mH^4 + 1/8*q1.e4*q2.e3*mH^4 )

       + D4 * ( 1/4*q1.e3*q2.e4*q2.k1*mH^2 + 1/4*q1.e4*q2.e3*q2.k1*mH^2 + 1/4*
         q2.k1*mu12*mH^2 )

       + D3 * (  - 1/8*mu12*mH^4 - 1/4*q1.e3*q2.e4*q2.k1*mH^2 - 1/8*q1.e3*
         q2.e4*mH^4 - 1/4*q1.e4*q2.e3*q2.k1*mH^2 - 1/8*q1.e4*q2.e3*mH^4 - 1/4*
         q2.k1*mu12*mH^2 )

       + D3*D5 * ( 1/8*mu12*mH^2 + 1/8*q1.e3*q2.e4*mH^2 + 1/8*q1.e4*q2.e3*mH^2
          + q1.k1*q2.k1 + 1/2*q2.k1*mH^2 )

       + D3*D4*D5 * (  - 1/2*q2.k1 )

       + D2 * (  - 1/8*q2.k2*mH^4 )

       + D2*D6 * (  - 1/16*mH^4 )

       + D2*D5 * ( 1/16*mH^4 )

       + D2*D4 * (  - 1/8*q2.k1*mH^2 )

       + D2*D3 * (  - 3/16*mH^4 - 1/8*mu12*mH^2 - 1/8*q1.e3*q2.e4*mH^2 - 1/8*
         q1.e4*q2.e3*mH^2 - q1.k1*q2.k1 - 1/2*q1.k1*mH^2 - 3/8*q2.k1*mH^2 - 1/
         8*q2.k2*mH^2 )

       + D2*D3*D4 * ( 1/4*mH^2 + 1/2*q2.k1 )

       + D1*D5 * (  - 1/8*mu12*mH^2 - 1/8*q1.e3*q2.e4*mH^2 - 1/8*q1.e4*q2.e3*
         mH^2 )

       + D1*D4*D5 * ( 1/2*q2.k1 )

       + D1*D2 * ( 1/8*mu12*mH^2 + 1/8*q1.e3*q2.e4*mH^2 + 1/8*q1.e4*q2.e3*mH^2
          + 1/8*q2.k2*mH^2 )

       + D1*D2*D4 * (  - 1/4*mH^2 - 1/2*q2.k1 );

Example of Reducible Integral


